login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234042
a(n) = binomial(n+4,4)*gcd(n,5)/5.
6
1, 1, 3, 7, 14, 126, 42, 66, 99, 143, 1001, 273, 364, 476, 612, 3876, 969, 1197, 1463, 1771, 10626, 2530, 2990, 3510, 4095, 23751, 5481, 6293, 7192, 8184, 46376, 10472, 11781, 13209, 14763, 82251, 18278, 20254, 22386, 24682, 135751, 29799, 32637, 35673, 38916
OFFSET
0,3
COMMENTS
The sixth column of the triangle A107711.
LINKS
FORMULA
a(n) = A107711(n+5,5) = binomial(n+5,5)*gcd(n,5)/(n+5), with n >= 0.
O.g.f.: ((1+x^20) + x*(1+x^18) + 3*x^2*(1+x^16) + 7*x^3*(1+x^14) + 14*x^4*(1+x^12) + 121*x^5*(1+x^10)+37*x^6*(1+x^8) + 51*x^7*(1+x^6) + 64*x^8*(1+x^4) + 73*x^9*(1+x^2) + 381*x^10)/(1-x^5)^5. From the 5-section using n = 5*k + j, for j = 0, 1, 2, 3, 4.
Sum_{n>=0} 1/a(n) = 20/3 - 16*sqrt(10-22/sqrt(5))*Pi/5. - Amiram Eldar, Sep 20 2022
MATHEMATICA
a[n_] := Binomial[n + 4, 4] * GCD[n, 5]/5; Table[a[n], {n, 0, 40}] (* Amiram Eldar, Sep 20 2022 *)
PROG
(PARI) a(n) = binomial(n+4, 4)*gcd(n, 5)/5 \\ Charles R Greathouse IV, Feb 16 2017
CROSSREFS
Cf. A107711, A208950 (fifth column of A107711), A109009 (gcd(n,5)).
Sequence in context: A146155 A106363 A128658 * A001203 A154883 A302029
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 24 2014
STATUS
approved