|
|
A109009
|
|
a(n) = gcd(n,5).
|
|
7
|
|
|
5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 1 + 4*[5|n], where [x|y] = 1 when x divides y, 0 otherwise.
a(n) = a(n-5).
Multiplicative with a(p^e, 5) = gcd(p^e, 5). - David W. Wilson, Jun 12 2005
Dirichlet g.f.: zeta(s)*(1+4/5^s).
G.f.: ( -5-x-x^2-x^3-x^4 ) / ( (x-1)*(1+x+x^2+x^3+x^4) ). (End)
a(n) = 4*floor(1/2*cos((2*n*Pi)/5)+1/2) + 1.
|
|
MATHEMATICA
|
GCD[Range[0, 100], 5] (* or *) PadRight[{}, 120, {5, 1, 1, 1, 1}] (* Harvey P. Dale, Jun 29 2018 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,mult
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|