login
A109009
a(n) = gcd(n,5).
7
5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5
OFFSET
0,1
FORMULA
a(n) = 1 + 4*[5|n], where [x|y] = 1 when x divides y, 0 otherwise.
a(n) = a(n-5).
Multiplicative with a(p^e, 5) = gcd(p^e, 5). - David W. Wilson, Jun 12 2005
From R. J. Mathar, Apr 04 2011: (Start)
Dirichlet g.f.: zeta(s)*(1+4/5^s).
G.f.: ( -5-x-x^2-x^3-x^4 ) / ( (x-1)*(1+x+x^2+x^3+x^4) ). (End)
a(n) = 4*floor(1/2*cos((2*n*Pi)/5)+1/2) + 1.
= 4*floor(((n-1) mod 5)/4) + 1. - Gary Detlefs, Dec 28 2011
MATHEMATICA
GCD[Range[0, 100], 5] (* or *) PadRight[{}, 120, {5, 1, 1, 1, 1}] (* Harvey P. Dale, Jun 29 2018 *)
PROG
(PARI) a(n)=gcd(n, 5) \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. A109004.
Sequence in context: A161685 A257461 A129398 * A060904 A351084 A135469
KEYWORD
nonn,easy,mult
AUTHOR
STATUS
approved