login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109009 a(n) = gcd(n,5). 6
5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..100.

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).

FORMULA

a(n) = 1 + 4*[5|n], where [x|y] = 1 when x divides y, 0 otherwise.

a(n) = a(n-5).

Multiplicative with a(p^e, 5) = gcd(p^e, 5). - David W. Wilson, Jun 12 2005

From R. J. Mathar, Apr 04 2011: (Start)

Dirichlet g.f.: zeta(s)*(1+4/5^s).

G.f.: ( -5-x-x^2-x^3-x^4 ) / ( (x-1)*(1+x+x^2+x^3+x^4) ). (End)

a(n) = 4*floor(1/2*cos((2*n*Pi)/5)+1/2) + 1.

     = 4*floor(((n-1) mod 5)/4) + 1. - Gary Detlefs, Dec 28 2011

MATHEMATICA

GCD[Range[0, 100], 5] (* or *) PadRight[{}, 120, {5, 1, 1, 1, 1}] (* Harvey P. Dale, Jun 29 2018 *)

PROG

(PARI) a(n)=gcd(n, 5) \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Cf. A109004.

Sequence in context: A161685 A257461 A129398 * A060904 A135469 A170817

Adjacent sequences:  A109006 A109007 A109008 * A109010 A109011 A109012

KEYWORD

nonn,easy,mult

AUTHOR

Mitch Harris

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 5 19:09 EDT 2021. Contains 343573 sequences. (Running on oeis4.)