login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A351084 a(n) = gcd(n, A328572(n)), where A328572 converts the primorial base expansion of n into its prime product form, but with 1 subtracted from all nonzero digits. 6
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 25, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 5, 1, 7, 1, 1, 5, 1, 1, 1, 7, 5, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 49, 1, 1, 1, 1, 1, 1, 35 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,16
LINKS
FORMULA
a(n) = gcd(n, A328572(n)) = gcd(A324198(n), A351083(n)).
a(n) = gcd(n, A085731(A276086(n))) = gcd(n, A276086(n), A327860(n)).
PROG
(PARI)
A328572(n) = { my(m=1, p=2); while(n, if(n%p, m *= p^((n%p)-1)); n = n\p; p = nextprime(1+p)); (m); };
A351084(n) = gcd(n, A328572(n));
(PARI) A351084(n) = { my(m=1, p=2, orgn=n); while(n, if(n%p, m *= (p^min((n%p)-1, valuation(orgn, p)))); n = n\p; p = nextprime(1+p)); (m); };
CROSSREFS
Sequence in context: A129398 A109009 A060904 * A135469 A348735 A170817
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Feb 03 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 03:51 EDT 2024. Contains 375995 sequences. (Running on oeis4.)