login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351084
a(n) = gcd(n, A328572(n)), where A328572 converts the primorial base expansion of n into its prime product form, but with 1 subtracted from all nonzero digits.
6
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 25, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 5, 1, 7, 1, 1, 5, 1, 1, 1, 7, 5, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 49, 1, 1, 1, 1, 1, 1, 35
OFFSET
0,16
FORMULA
a(n) = gcd(n, A328572(n)) = gcd(A324198(n), A351083(n)).
a(n) = gcd(n, A085731(A276086(n))) = gcd(n, A276086(n), A327860(n)).
PROG
(PARI)
A328572(n) = { my(m=1, p=2); while(n, if(n%p, m *= p^((n%p)-1)); n = n\p; p = nextprime(1+p)); (m); };
A351084(n) = gcd(n, A328572(n));
(PARI) A351084(n) = { my(m=1, p=2, orgn=n); while(n, if(n%p, m *= (p^min((n%p)-1, valuation(orgn, p)))); n = n\p; p = nextprime(1+p)); (m); };
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Feb 03 2022
STATUS
approved