login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234043
a(n) = binomial(5*(n+1),4)/5, with n >= 0.
8
1, 42, 273, 969, 2530, 5481, 10472, 18278, 29799, 46060, 68211, 97527, 135408, 183379, 243090, 316316, 404957, 511038, 636709, 784245, 956046, 1154637, 1382668, 1642914, 1938275, 2271776, 2646567, 3065923, 3533244, 4052055, 4626006, 5258872, 5954553, 6717074
OFFSET
0,2
COMMENTS
Used as one of the 5-section parts of A234042.
The Fuss-Catalan numbers are Cat(d,k) = (1/(k*(d-1)+1))*binomial(k*d,k) and enumerate the (d+1)-gon partitions of a (k*(d-1)+2)-gon (cf. Whieldon and Schuetz link). a(n) = Cat(n,5) (Offset=1), so enumerates the (n+1)-gon partitions of a (5*(n-1)+2)-gon. Analogous series are A000326 (k=3) and A100157 (k=4). - Tom Copeland, Oct 05 2014
LINKS
Alison Schuetz and Gwyneth Whieldon, Polygonal Dissections and Reversions of Series, arXiv:1401.7194 [math.CO], 2014.
FORMULA
G.f: (1 + 37*x + 73*x^2 + 14*x^3)/(1-x)^5.
a(n) = A234042(5*n+1) for n >= 0.
a(n) = (n+1)*(5*n+2)*(5*n+3)*(5*n+4)/24.
From Amiram Eldar, Sep 20 2022: (Start)
Sum_{n>=0} 1/a(n) = 10*sqrt(5)*log(phi) + 5*log(5) - 2*sqrt(25-38/sqrt(5))*Pi, where phi is the golden ratio (A001622).
Sum_{n>=0} (-1)^n/a(n) = 4*sqrt(5)*log(phi) + 2*sqrt(26-38/sqrt(5))*Pi - 32*log(2). (End)
MATHEMATICA
CoefficientList[Series[(1 + 37 x + 73 x^2 + 14 x^3)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 26 2014 *)
PROG
(Magma) [Binomial(5*(n+1), 4)/5: n in [0..40]]; // Vincenzo Librandi, Feb 26 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 24 2014
STATUS
approved