login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282497
'Somos expansion' of e: e=a(0)*sqrt(a(1)*sqrt(a(2)*sqrt(a(3)*sqrt(...)))). a(n)=floor(x(n)), x(n)=x(n-1)^2/a(n-1)^2, x(0)=e.
1
2, 1, 3, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 1, 1, 3, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1
OFFSET
0,1
COMMENTS
1<=a(n)<=3 for all n. Reasoning: for x>1 it follows that 1<x/floor(x)<2.
LINKS
FORMULA
Product_{k>=0} a(k)^(1/2^k) = e.
EXAMPLE
Integer part of e is 2. Integer part of e^2/4 is 1.
MATHEMATICA
$MaxExtraPrecision = 1000;
x0 = E;
Nm = 130;
j = 1;
Res = Table[1, {j, 1, Nm}];
While[j < Nm, Res[[j]] = Floor[x0]; x0 = N[(x0/ Res[[j]])^2, 20000];
j++];
CROSSREFS
Cf. A001113 (digits).
Sequence in context: A226006 A210943 A260870 * A087157 A351094 A351092
KEYWORD
nonn
AUTHOR
Yuriy Sibirmovsky, Feb 16 2017
STATUS
approved