login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282495 Number of ways to write n as x^4 + y^2 + z^2 + w^2 with y^2 + 228*y*z + 60*z^2 a square, where x,y,z are nonnegative integers and w is a positive integer. 6
1, 2, 2, 2, 3, 3, 1, 1, 3, 4, 4, 3, 3, 3, 1, 1, 5, 6, 5, 5, 4, 2, 1, 2, 6, 8, 8, 4, 4, 4, 1, 2, 6, 7, 7, 6, 4, 4, 1, 3, 9, 8, 5, 3, 6, 4, 1, 2, 5, 8, 8, 7, 6, 6, 3, 3, 8, 6, 5, 4, 4, 6, 3, 2, 9, 11, 6, 6, 6, 5, 1, 3, 8, 8, 7, 4, 5, 5, 1, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n > 0.
By the linked JNT paper, any nonnegative integer can be expressed as the sum of a fourth power and three squares, and each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z*(y-z) = 0. Whether z = 0 or y = z, the number y^2 + 228*y*z + 60*z^2 is definitely a square.
See also A282463 and A282494 for similar conjectures.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017.
EXAMPLE
a(7) = 1 since 7 = 1^4 + 1^2 + 1^2 + 2^2 with 1^2 + 228*1*1 + 60*1^2 = 17^2.
a(8) = 1 since 8 = 0^4 + 2^2 + 0^2 + 2^2 with 2^2 + 228*2*0 + 60*0^2 = 2^2.
a(15) = 1 since 15 = 1^4 + 1^2 + 3^2 + 2^2 with 1^2 + 228*1*3 + 60*3^2 = 35^2.
a(23) = 1 since 23 = 1^4 + 3^2 + 3^2 + 2^2 with 3^2 + 228*3*3 + 60*3^2 = 51^2.
a(71) = 1 since 71 = 1^4 + 5^2 + 6^2 + 3^2 with 5^2 + 228*5*6 + 60*6^2 = 95^2.
a(159) = 1 since 159 = 3^4 + 7^2 + 2^2 + 5^2 with 7^2 + 228*7*2 + 60*2^2 = 59^2.
a(623) = 1 since 623 = 3^4 + 1^2 + 10^2 + 21^2 with 1^2 + 228*1*10 + 60*10^2 = 91^2.
a(879) = 1 since 879 = 5^4 + 5^2 + 15^2 + 2^2 with 5^2 + 228*5*15 + 60*15^2 = 175^2.
a(1423) = 1 since 1423 = 1^4 + 7^2 + 2^2 + 37^2 with 7^2 + 228*7*2 + 60*2^2 = 59^2.
a(3768) = 1 since 3768 = 0^4 + 2^2 + 20^2 + 58^2 with 2^2 + 228*2*20 + 60*20^2 = 182^2.
MATHEMATICA
Q[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
Do[r=0; Do[If[SQ[n-x^4-y^2-z^2]&&SQ[y^2+228*y*z+60*z^2], r=r+1], {x, 0, (n-1)^(1/4)}, {y, 0, Sqrt[n-1-x^4]}, {z, 0, Sqrt[n-1-x^4-y^2]}]; Print[n, " ", r]; Continue, {n, 1, 80}]
CROSSREFS
Sequence in context: A331553 A182663 A071452 * A354226 A341421 A308890
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 16 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 18:16 EDT 2024. Contains 371916 sequences. (Running on oeis4.)