|
|
A354226
|
|
a(n) is the number of distinct prime factors of (p^p - 1)/(p - 1) where p = prime(n).
|
|
0
|
|
|
1, 1, 2, 2, 2, 3, 3, 1, 4, 7, 1, 7, 5, 3, 3, 5, 3, 4, 6, 4, 10, 5, 4, 6, 6, 9, 5, 4, 5, 8, 6, 4, 11
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
a(34) > 3, and depends on the full factorization of the 296-digit composite number (139^139 - 1)/138. - Tyler Busby, Jan 22 2023
Sequence continues as ?, 8, ?, 5, 8, 4, 5, ?, 8, ?, 8, 7, 6, 3, 3, ..., where ? represents uncertain terms. - Tyler Busby, Jan 22 2023
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(3)=2, since (5^5 - 1)/(5 - 1) = 11*71.
|
|
PROG
|
(PARI) a(n) = my(p=prime(n)); omega((p^p-1)/(p-1)); \\ Michel Marcus, May 22 2022
(Python)
from sympy import factorint, prime
def a(n): p = prime(n); return len(factorint((p**p-1)//(p-1)))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|