|
|
A354229
|
|
Expansion of e.g.f. 1/(1 - log(1 + x)^3).
|
|
3
|
|
|
1, 0, 0, 6, -36, 210, -630, -5376, 153048, -2194296, 22190760, -93956544, -2677330656, 97821857952, -2019503487456, 27899293618944, -98409183995520, -9548919666829440, 410311098024923520, -10652005874894469120, 176525303194482117120, -46197517147757867520
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
FORMULA
|
a(0) = 1; a(n) = 6 * Sum_{k=1..n} binomial(n,k) * Stirling1(k,3) * a(n-k).
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * Stirling1(n,3*k).
|
|
PROG
|
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+x)^3)))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=6*sum(j=1, i, binomial(i, j)*stirling(j, 3, 1)*v[i-j+1])); v;
(PARI) a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 1));
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|