login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354232
Expansion of e.g.f. exp(log(1 + x)^5).
2
1, 0, 0, 0, 0, 120, -1800, 21000, -235200, 2693880, -30504600, 310239600, -2026767600, -22324267680, 1480359360480, -48314853350400, 1332965821824000, -34178451017685120, 837433109548661760, -19671723873906894720, 436228097513559408000
OFFSET
0,6
FORMULA
E.g.f.: (1 + x)^(log(1 + x)^4).
a(0) = 1; a(n) = 120 * Sum_{k=1..n} binomial(n-1,k-1) * Stirling1(k,5) * a(n-k).
a(n) = Sum_{k=0..floor(n/5)} (5*k)! * Stirling1(n,5*k)/k!.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(log(1+x)^5)))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1+x)^log(1+x)^4))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=120*sum(j=1, i, binomial(i-1, j-1)*stirling(j, 5, 1)*v[i-j+1])); v;
(PARI) a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 1)/k!);
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 20 2022
STATUS
approved