login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A052767
Expansion of e.g.f.: -(log(1-x))^5.
3
0, 0, 0, 0, 0, 120, 1800, 21000, 235200, 2693880, 32319000, 410031600, 5519487600, 78864820320, 1194924450720, 19166592681600, 324817601472000, 5803921108010880, 109115988701293440, 2154085473710580480, 44566174481427360000, 964537418717406213120, 21799797542483649131520
OFFSET
0,6
LINKS
FORMULA
E.g.f.: log(-1/(-1+x))^5.
Recurrence: a(1)=0, a(0)=0, a(2)=0, a(4)=0, a(3)=0, (-1-5*n-10*n^2-10*n^3-5*n^4-n^5)*a(n+1) + (31+5*n^4+70*n^2+30*n^3+75*n)*a(n+2) + (-125*n-90-60*n^2-10*n^3)*a(n+3) + (10*n^2+65+50*n)*a(n+4) + (-15-5*n)*a(n+5) + a(n+6)=0, a(5)=120.
a(n) = 120*A000482(n) = 5!*Stirling1(n,5)*(-1)^(n+1). - Andrew Howroyd, Jul 27 2020
MAPLE
spec := [S, {B=Cycle(Z), S=Prod(B, B, B, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[-(Log[1-x])^5, {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Oct 14 2019 *)
PROG
(PARI) a(n) = {5!*stirling(n, 5, 1)*(-1)^(n+1)} \\ Andrew Howroyd, Jul 27 2020
CROSSREFS
Column k=5 of A225479.
Sequence in context: A373940 A354230 A354232 * A353404 A353200 A110839
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
Definition clarified by Harvey P. Dale, Oct 14 2019
Terms a(20) and beyond from Andrew Howroyd, Jul 27 2020
STATUS
approved