OFFSET
0,6
COMMENTS
Previous name was: A simple grammar.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..448
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 722
FORMULA
E.g.f.: x^2*log(-1/(-1+x))^3.
Recurrence: a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=120, (16*n-48*n^2-4*n^3-n^6+13*n^4+48)*a(n) + (n^2+61*n-26*n^3+3*n^4+3*n^5-42)*a(n+1) + (-9*n+15*n^2-3*n^3-3*n^4)*a(n+2) + (n^3-n)*a(n+3) = 0.
a(n) ~ (n-1)! * (3*log(n)^2 + 6*gamma*log(n) - Pi^2/2 + 3*gamma^2), where gamma is Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 01 2013
a(n) = n*A052758(n-1) = 3!*n*(n-1)*abs(Stirling1(n-2,3)) for n >= 2. - Andrew Howroyd, Aug 08 2020
MAPLE
spec := [S, {B=Cycle(Z), S=Prod(Z, Z, B, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[-x^2*(Log[1-x])^3, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2013 *)
PROG
(PARI) x='x+O('x^30); concat(vector(5), Vec(serlaplace(x^2*log(-1/(-1+x))^3))) \\ G. C. Greubel, Sep 05 2018
(PARI) a(n)={if(n>=2, 3!*n*(n-1)*abs(stirling(n-2, 3, 1)), 0)} \\ Andrew Howroyd, Aug 08 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New name using e.g.f., Vaclav Kotesovec, Oct 01 2013
STATUS
approved