OFFSET
0,6
FORMULA
a(0) = 1; a(n) = 120 * Sum_{k=1..n} binomial(n,k) * Stirling1(k,5) * a(n-k).
a(n) = Sum_{k=0..floor(n/5)} (5*k)! * Stirling1(n,5*k).
MATHEMATICA
With[{nn=30}, CoefficientList[Series[1/(1-Log[1+x]^5), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Sep 20 2024 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+x)^5)))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=120*sum(j=1, i, binomial(i, j)*stirling(j, 5, 1)*v[i-j+1])); v;
(PARI) a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 1));
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 20 2022
STATUS
approved