login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282495 Number of ways to write n as x^4 + y^2 + z^2 + w^2 with y^2 + 228*y*z + 60*z^2 a square, where x,y,z are nonnegative integers and w is a positive integer. 6

%I #21 Mar 11 2023 08:05:30

%S 1,2,2,2,3,3,1,1,3,4,4,3,3,3,1,1,5,6,5,5,4,2,1,2,6,8,8,4,4,4,1,2,6,7,

%T 7,6,4,4,1,3,9,8,5,3,6,4,1,2,5,8,8,7,6,6,3,3,8,6,5,4,4,6,3,2,9,11,6,6,

%U 6,5,1,3,8,8,7,4,5,5,1,3

%N Number of ways to write n as x^4 + y^2 + z^2 + w^2 with y^2 + 228*y*z + 60*z^2 a square, where x,y,z are nonnegative integers and w is a positive integer.

%C Conjecture: a(n) > 0 for all n > 0.

%C By the linked JNT paper, any nonnegative integer can be expressed as the sum of a fourth power and three squares, and each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z*(y-z) = 0. Whether z = 0 or y = z, the number y^2 + 228*y*z + 60*z^2 is definitely a square.

%C See also A282463 and A282494 for similar conjectures.

%H Zhi-Wei Sun, <a href="/A282495/b282495.txt">Table of n, a(n) for n = 1..10000</a>

%H Zhi-Wei Sun, <a href="http://dx.doi.org/10.1016/j.jnt.2016.11.008">Refining Lagrange's four-square theorem</a>, J. Number Theory 175(2017), 167-190.

%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1701.05868">Restricted sums of four squares</a>, arXiv:1701.05868 [math.NT], 2017.

%e a(7) = 1 since 7 = 1^4 + 1^2 + 1^2 + 2^2 with 1^2 + 228*1*1 + 60*1^2 = 17^2.

%e a(8) = 1 since 8 = 0^4 + 2^2 + 0^2 + 2^2 with 2^2 + 228*2*0 + 60*0^2 = 2^2.

%e a(15) = 1 since 15 = 1^4 + 1^2 + 3^2 + 2^2 with 1^2 + 228*1*3 + 60*3^2 = 35^2.

%e a(23) = 1 since 23 = 1^4 + 3^2 + 3^2 + 2^2 with 3^2 + 228*3*3 + 60*3^2 = 51^2.

%e a(71) = 1 since 71 = 1^4 + 5^2 + 6^2 + 3^2 with 5^2 + 228*5*6 + 60*6^2 = 95^2.

%e a(159) = 1 since 159 = 3^4 + 7^2 + 2^2 + 5^2 with 7^2 + 228*7*2 + 60*2^2 = 59^2.

%e a(623) = 1 since 623 = 3^4 + 1^2 + 10^2 + 21^2 with 1^2 + 228*1*10 + 60*10^2 = 91^2.

%e a(879) = 1 since 879 = 5^4 + 5^2 + 15^2 + 2^2 with 5^2 + 228*5*15 + 60*15^2 = 175^2.

%e a(1423) = 1 since 1423 = 1^4 + 7^2 + 2^2 + 37^2 with 7^2 + 228*7*2 + 60*2^2 = 59^2.

%e a(3768) = 1 since 3768 = 0^4 + 2^2 + 20^2 + 58^2 with 2^2 + 228*2*20 + 60*20^2 = 182^2.

%t Q[n_]:=SQ[n]=IntegerQ[Sqrt[n]];

%t Do[r=0;Do[If[SQ[n-x^4-y^2-z^2]&&SQ[y^2+228*y*z+60*z^2],r=r+1],{x,0,(n-1)^(1/4)},{y,0,Sqrt[n-1-x^4]},{z,0,Sqrt[n-1-x^4-y^2]}];Print[n," ",r];Continue,{n,1,80}]

%Y Cf. A000118, A000290, A000583, A271518, A281976, A281977, A282013, A282014, A282463, A282494.

%K nonn

%O 1,2

%A _Zhi-Wei Sun_, Feb 16 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 15:55 EDT 2024. Contains 375976 sequences. (Running on oeis4.)