login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026637
Triangular array T read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,1) = T(n,n-1) = floor((3*n-1)/2) for n >= 1, otherwise T(n,k) = T(n-1,k-1) + T(n-1,k) for 2 <= k <= n-2, n >= 4.
17
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 5, 8, 5, 1, 1, 7, 13, 13, 7, 1, 1, 8, 20, 26, 20, 8, 1, 1, 10, 28, 46, 46, 28, 10, 1, 1, 11, 38, 74, 92, 74, 38, 11, 1, 1, 13, 49, 112, 166, 166, 112, 49, 13, 1, 1, 14, 62, 161, 278, 332, 278, 161, 62, 14, 1, 1, 16, 76, 223, 439, 610, 610, 439, 223, 76, 16, 1
OFFSET
0,5
COMMENTS
T(n, k) = number of paths from (0, 0) to (n-k, k) in directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, j)-to-(i+1, j+1) for i=0, j >= 1 and odd and for j=0, i >= 1 and odd.
See A228053 for a sequence with many terms in common with this one. - T. D. Noe, Aug 07 2013
LINKS
FORMULA
From G. C. Greubel, Jun 28 2024: (Start)
T(n, n-k) = T(n, k).
T(2*n-1, n-1) = A026641(n), n >= 1.
Sum_{k=0..n} T(n, k) = A026644(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 5, 8, 5, 1;
1, 7, 13, 13, 7, 1;
1, 8, 20, 26, 20, 8, 1;
1, 10, 28, 46, 46, 28, 10, 1;
1, 11, 38, 74, 92, 74, 38, 11, 1;
1, 13, 49, 112, 166, 166, 112, 49, 13, 1;
1, 14, 62, 161, 278, 332, 278, 161, 62, 14, 1;
MAPLE
A026637 := proc(n, k)
option remember;
if k=0 or k=n then
1
elif k=1 or k=n-1 then
floor((3*n-1)/2) ;
elif k <0 or k > n then
0;
else
procname(n-1, k-1)+procname(n-1, k) ;
end if;
end proc: # R. J. Mathar, Apr 26 2015
MATHEMATICA
T[n_, k_] := T[n, k] = Which[k == 0 || k == n, 1, k == 1 || k == n-1, Floor[(3n-1)/2], k < 0 || k > n, 0, True, T[n-1, k-1] + T[n-1, k]];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
PROG
(Haskell)
a026637 n k = a026637_tabl !! n !! k
a026637_row n = a026637_tabl !! n
a026637_tabl = [1] : [1, 1] : map (fst . snd)
(iterate f (0, ([1, 2, 1], [0, 1, 1, 0]))) where
f (i, (xs, ws)) = (1 - i,
if i == 1 then (ys, ws) else (zipWith (+) ys ws, ws'))
where ys = zipWith (+) ([0] ++ xs) (xs ++ [0])
ws' = [0, 1, 0, 0] ++ drop 2 ws
-- Reinhard Zumkeller, Aug 08 2013
(Magma)
function T(n, k) // T = A026637
if k eq 0 or k eq n then return 1;
elif k eq 1 or k eq n-1 then return Floor((3*n-1)/2);
else return T(n-1, k) + T(n-1, k-1);
end if;
end function;
[T(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jun 28 2024
(SageMath)
def T(n, k): # T = A026637
if k==0 or k==n: return 1
elif k==1 or k==n-1: return ((3*n-1)//2)
else: return T(n-1, k) + T(n-1, k-1)
flatten([[T(n, k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jun 28 2024
CROSSREFS
Sums include: A000007 (alternating sign row), A026644 (row), A026645, A026646, A026647 (diagonal).
Sequence in context: A176388 A282494 A156609 * A026659 A026386 A147532
KEYWORD
nonn,tabl,easy
STATUS
approved