login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372324
Expansion of e.g.f. arcsin(x)^2/(2*(1 - x)).
0
0, 0, 1, 3, 16, 80, 544, 3808, 32768, 294912, 3096576, 34062336, 423493632, 5505417216, 79199207424, 1187988111360, 19423989596160, 330207823134720, 6050282848911360, 114955374129315840, 2333627101111910400, 49006169123350118400, 1091943568123940044800
OFFSET
0,4
COMMENTS
a(2*n) appears in the formula for the limit, as k -> infinity, of the area between cos^(2*n)(x) and cos^(2*n)(k*x) on the interval [0, Pi]. To be precise, here is the formula: a(2*n)*(16/Pi)/((2*n)!!)^2 = Lim_{k->oo} Integral_{x=0..Pi} abs(cos^(2*n)(x) - cos^(2*n)(k*x)) dx. See the article by Dombrowski and Dresden.
LINKS
Muhammad Adam Dombrowski and Gregory Dresden, Areas Between Cosines, arXiv:2404.17694 [math.CO], 2024.
FORMULA
a(2*n+1) = (2*n+1)*a(2*n).
a(2*n) = (2*n)*(2*n-1)*a(2*n-2) + ((2*n-2)!!)^2.
a(n) = (n!)*Sum_{k=0..(n-2)/2} ((2*k)!!)/(((2*k+1)!!)*(2*k+2)).
E.g.f.: arcsin(x)^2/(2*(1 - x)).
a(n) ~ n! * (Pi^2/8) * (1 - 2^(5/2)/(Pi^(3/2)*sqrt(n))). - Vaclav Kotesovec, May 01 2024
D-finite with recurrence a(n) -n*a(n-1) -(n-2)^2*a(n-2) +(n-2)^3*a(n-3)=0. - R. J. Mathar, May 02 2024
MATHEMATICA
Table[n! SeriesCoefficient[ArcSin[x]^2/(2 (1 - x)), {x, 0, n}], {n, 0, 22}]
CROSSREFS
Cf. A296726.
Sequence in context: A055842 A037773 A037661 * A290587 A072615 A020871
KEYWORD
nonn
AUTHOR
Greg Dresden, Apr 27 2024
STATUS
approved