Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Aug 30 2024 02:55:32
%S 1,1,2,2,8,16,5,30,96,192,14,112,480,1408,2816,42,420,2240,8320,23296,
%T 46592,132,1584,10080,44800,153600,417792,835584,429,6006,44352,
%U 228480,913920,2976768,7938048,15876096,1430,22880,192192,1123584,5107200,19066880,59924480,157515776,315031552
%N Array by antidiagonals: Number of planar lattice walks of length 3n+2k starting at (0,0) and ending at (k,0), remaining in the first quadrant and using only NE,W,S steps.
%H G. Kreweras, <a href="http://www.numdam.org/numdam-bin/item?id=BURO_1965__6__9_0">Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers</a>, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, 6 (1965), Eq. (85) p. 98.
%H M. Bousquet-Mélou, <a href="https://arxiv.org/abs/math/0401067">Walks in the quarter plane: Kreweras' algebraic model</a>, arXiv:math/0401067 [math.CO], 2004-2006.
%F T(n, k) = 4^n * (2k+1)/[(n+k+1)*(2n+2k+1)] * C(2k, k) * C(3n+2k, n).
%F T(n, k) = 2^(2*k)*(k+2*n)!/(k!*(2*n+2)!)*(2*n-2*k+2)!/((n-k)!*(n-k+1)!), as a triangle. - _Michel Marcus_, Nov 19 2014
%e As an array:
%e 1 2 16 192 2816 46592
%e 1 8 96 1408 23296 417792
%e 2 30 480 8320 153600 2976768
%e 5 112 2240 44800 913920 19066880
%e 14 420 10080 228480 5107200 114250752
%e ...
%e As a regular triangle:
%e 1;
%e 1, 2;
%e 2, 8, 16;
%e 5, 30, 96, 192;
%e 14, 112, 480, 1408, 2816;
%e ...
%t T[n_, k_] := 4^n (2k+1)/((n+k+1)(2n+2k+1)) Binomial[2k, k] Binomial[3n+2k, n];
%t Table[T[n-k, k], {n, 0, 8}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Jul 25 2018 *)
%o (PARI) T(n,k)=4^n*(2*k+1)/(n+k+1)/(2*n+2*k+1)*binomial(2*k,k)*binomial(3*n+2*k,n)
%o (PARI) tabl(nn) = {for (n=0, nn, for (k=0, n, print1(2^(2*k)*(k+2*n)!/(k!*(2*n+2)!)*(2*n-2*k+2)!/((n-k)!*(n-k+1)!);, ", ");); print(););} \\ _Michel Marcus_, Nov 19 2014
%Y First row is A006335. First column is A000108 (Catalan numbers).
%K nonn,tabl,walk
%O 0,3
%A _Ralf Stephan_, Sep 02 2004