OFFSET
0,2
COMMENTS
2^n(x+1) divides D(n,x).
LINKS
A. Randrianarivony and J. Zeng, Une famille de polynomes qui interpole plusieurs suites classiques de nombres, Adv. Appl. Math. 17 (1996), 1-26.
FORMULA
Recurrence: D(0, x)=1, D(n, x) = (x+1)(x+2)D(n-1, x+2) - x(x+1)D(n-1, x).
G.f.: Sum[n>=0, D(n, x)t^n] = 1/(1-2(x+1)t/(1-2(x+2)t/(1-4(x+3)t/(1-4(x+4)t/...)))).
G.f.: Sum_{n>=0} D(n,y)*x^n = Sum_{n>=0} n!*(2*x)^n*Product_{k=1..n} (k+y)/(1+k*(k+1)*x). - Paul D. Hanna, Sep 05 2012
EXAMPLE
D(0,x) = 1,
D(1,x) = 2*x + 2,
D(2,x) = 8*x^2 + 20*x + 12,
D(3,x) = 48*x^3 + 224*x^2 + 344*x + 168,
D(4,x) = 384*x^4 + 2880*x^3 + 8096*x^2 + 9872*x + 4272.
MATHEMATICA
d[0, _] = 1; d[n_, x_] := d[n, x] = (x+1)(x+2)d[n-1, x+2] - x(x+1)d[n-1, x];
Table[CoefficientList[d[n, x], x] // Reverse, {n, 0, 8}] // Flatten (* Jean-François Alcover, Jul 27 2018 *)
PROG
(PARI) D(n, x)=if(n<1, 1, (x+1)*(x+2)*D(n-1, x+2)-x*(x+1)*D(n-1, x))
(PARI) T(n, k)=local(A=sum(m=0, n, m!*(2*x)^m*prod(j=1, m, (j+y)/(1+j*(j+1)*x +x*O(x^n))))); polcoeff(polcoeff(A, n, x), n-k, y)
{for(n=0, 8, for(k=0, n, print1(T(n, k), ", ")); print())} \\ Paul D. Hanna, Sep 05 2012
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, Sep 07 2004
STATUS
approved