login
A098280
Front-to-back insertion-permutation sequence.
2
1, 2, 1, 1, 2, 3, 2, 1, 2, 3, 1, 2, 1, 3, 3, 1, 2, 1, 3, 2, 1, 2, 3, 4, 3, 2, 1, 3, 4, 2, 1, 3, 2, 4, 1, 3, 2, 1, 4, 4, 2, 3, 1, 2, 4, 3, 1, 2, 3, 4, 1, 2, 3, 1, 4, 4, 2, 1, 3, 2, 4, 1, 3, 2, 1, 4, 3, 2, 1, 3, 4, 4, 3, 1, 2, 3, 4, 1, 2, 3, 1, 4, 2, 3, 1, 2, 4, 4, 1, 3, 2, 1, 4, 3, 2, 1, 3, 4, 2, 1, 3, 2, 4, 4, 1, 2, 3, 1, 4, 2, 3, 1, 2, 4, 3, 1, 2, 3, 4
OFFSET
1,2
COMMENTS
Contains every finite sequence of distinct numbers infinitely many times.
FORMULA
Write 1. Then place 2 before 1 and then 2 after 1, yielding 21 and 12, as well as the first 5 terms of the sequence. Next, generate the 6 permutations of 1, 2, 3 by inserting 3 into 21 and then 12, from front-to-back, like this: 321, 231, 213 then 213, 132, 123. Next, generate the 24 permutations of 1, 2, 3, 4 by inserting 4 into the permutations of 1, 2, 3. Continue forever.
EXAMPLE
The permutations can be written as
1,
21, 12,
321, 231, 213, 312, 132, 123, etc.
Write them in order and insert commas.
PROG
(PARI) tabf(nn) = my(v=[[1]], w); print(v); for(n=2, nn, w=List([]); for(k=1, #v, for(i=1, n, listput(w, concat([v[k][1..i-1], n, v[k][i..n-1]])))); print(Vec(v=w))); \\ Jinyuan Wang, Sep 01 2021
CROSSREFS
Sequence in context: A341456 A319420 A267134 * A005793 A183391 A029346
KEYWORD
nonn
AUTHOR
Clark Kimberling, Sep 01 2004
STATUS
approved