OFFSET
0,2
COMMENTS
Row 4 of A364113.
Compare with the two types of Apéry numbers A005258 and A005259, which are related to the Legendre polynomials by A005258(n) = [x^n] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x)) and A005259(n) = [x^k] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x))^2.
Both types of Apéry numbers satisfy the supercongruences
1) u (n*p^r) == u(n*p^(r-1)) (mod p^(3*r))
and the shifted supercongruences
2) u (n*p^r - 1) == u(n*p^(r-1) - 1) (mod p^(3*r))
for all primes p >= 5 and positive integers n and r.
We conjecture that the present sequence also satisfies the supercongruences 1) and 2).
FORMULA
a(n) ~ phi^(10*n + 5) / (2^(3/2) * 5^(1/4) * Pi^(5/2) * n^(5/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jul 09 2023
EXAMPLE
Examples of supercongruences:
a(11) - a(1) = 34125049533650776281 - 9 = (2^4)*(3^2)*(11^3)*13*97*11423* 12360541 == 0 (mod 11^3).
a(11 - 1) - a(0) = 349918540195094289 - 1 = (2^4)*(11^3)*103*159526079101 == 0 (mod 11^3).
a(5^2) - a(5) = 823068999686576893970482230168234294266351898009 - 65898009 = (2^7)*(3^2)*(5^6)*11*17*31*311*35978539*2371705409*297232149579326831 == 0 (mod 5^6).
a(5^2 - 1) - a(5 - 1) = 7402345246022867712987394168675984358488158001- 908001 = (2^4)*(5^6)*13*29*911*1459*26046751*925152076787*2452153330349 == 0 (mod 5^6).
MAPLE
a(n) := coeff(series(1/((1-x))* LegendreP(k, (1+x)/(1-x))^4, x, 21):
seq(a(n), n = 0..20);
MATHEMATICA
Table[SeriesCoefficient[1/(1 - x) * LegendreP[n, (1 + x)/(1 - x)]^4, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 09 2023 *)
PROG
(PARI) a(n) = my(x='x+O('x^(n+1))); polcoef((1/(1-x))*pollegendre(n, (1+x)/(1-x))^4, n); \\ Michel Marcus, Jul 12 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jul 08 2023
STATUS
approved