

A294078


a(n) is the smallest even number k such that k*prime(n)  1 or k*prime(n) + 1 is prime.


0



2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 2, 4, 6, 2, 6, 6, 4, 4, 4, 2, 2, 2, 2, 6, 6, 6, 6, 2, 4, 2, 4, 2, 8, 6, 2, 4, 10, 2, 2, 6, 2, 4, 4, 2, 2, 8, 4, 2, 2, 2, 6, 2, 6, 4, 6, 2, 4, 2, 6, 2, 2, 6, 6, 6, 2, 2, 6, 8, 10, 2, 2, 4, 2, 4, 6, 6, 8, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

For n <= 10^9 the largest term is 186.
First occurrence of 2k, k=1,2,3,...: 1, 6, 15, 35, 39, 117, 1134, 199, 152, 362, ..., .  Robert G. Wilson v, Feb 08 2018


LINKS

Table of n, a(n) for n=1..80.


EXAMPLE

For n = 6, prime(6) = 13. The smallest even number k such that k * 13 + 1 is a prime number is k = 4, because 4 * 13 + 1 = 53 (not k = 2). So 4 is the sixth term.


MATHEMATICA

f[n_] := Block[{k = 2, p = Prime@ n}, While[ !PrimeQ[k*p 1] && !PrimeQ[k*p +1], k += 2]; k]; Array[f, 100] (* Robert G. Wilson v, Feb 08 2018 *)


PROG

(PARI) {
forprime(p=2, 100,
k=2;
while(!isprime(k*p1)&&!isprime(k*p+1), k+=2);
print1(k", ");
)
}


CROSSREFS

Cf. A000040, A071407 (with "and" rather than "or").
Sequence in context: A319819 A319820 A319799 * A064133 A295101 A160675
Adjacent sequences: A294075 A294076 A294077 * A294079 A294080 A294081


KEYWORD

nonn


AUTHOR

Dimitris Valianatos, Feb 07 2018


STATUS

approved



