login
A295101
Number of squarefree sqrt(n)-smooth numbers <= n.
3
1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14
OFFSET
1,4
COMMENTS
a(n) = number of positive squarefree integers m<=n such that A006530(m) <= sqrt(n).
LINKS
FORMULA
a(n) = A013928(n+1) - Sum_{prime p > sqrt(n)} A013928(floor(n/p)+1).
If n is in A295102, then a(n)=a(n-1)+1; if n is in A001248, i.e., n=p^2 for prime p, then a(n)=a(n-1)+A013928(p); otherwise a(n)=a(n-1).
MAPLE
N:= 200: # for a(1)..a(N)
V:= Vector(N, 1):
for n from 2 to N do
if not numtheory:-issqrfree(n) then next fi;
m:= max(max(numtheory:-factorset(n))^2, n);
if m <= N then V[m..N]:= map(`+`, V[m..N], 1) fi;
od:
convert(V, list); # Robert Israel, Mar 24 2020
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Max Alekseyev, Nov 14 2017
STATUS
approved