Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Feb 23 2018 11:08:30
%S 0,1,1,0,1,-1,1,0,0,-1,1,1,1,-1,-1,0,1,1,1,1,-1,-1,1,-1,0,-1,0,1,1,1,
%T 1,0,-1,-1,-1,-1,1,-1,-1,-1,1,2,1,1,1,-1,1,1,0,1,-1,1,1,-1,-1,-1,-1,
%U -1,1,-3,1,-1,1,0,-1,2,1,1,-1,1,1,2,1,-1,1,1,-1,2,1,1,0,-1,1,-2,-1,-1,-1,-1,1,-3,-1
%N Strict Moebius function of the multiorder of integer partitions indexed by Heinz numbers.
%C By convention a(1) = 0.
%C The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%F mu(y) = Sum_{g(t)=y} (-1)^d(t), where the sum is over all strict trees (A273873) whose multiset of leaves is the integer partition y, and d(t) is the number of non-leaf nodes in t.
%t nn=120;
%t ptns=Table[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]],{n,nn}];
%t tris=Join@@Map[Tuples[IntegerPartitions/@#]&,ptns];
%t qmu[y_]:=qmu[y]=If[Length[y]===1,1,-Sum[Times@@qmu/@t,{t,Select[tris,And[Length[#]>1,Sort[Join@@#,Greater]===y,UnsameQ@@#]&]}]];
%t qmu/@ptns
%Y Cf. A000041, A000720, A056239, A063834, A196545, A273873, A289501, A294018, A294019, A296150, A299201, A299202, A299203.
%K sign
%O 1,42
%A _Gus Wiseman_, Feb 07 2018