This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080674 a(n) = (4/3)*(4^n - 1). 15
 0, 4, 20, 84, 340, 1364, 5460, 21844, 87380, 349524, 1398100, 5592404, 22369620, 89478484, 357913940, 1431655764, 5726623060, 22906492244, 91625968980, 366503875924, 1466015503700, 5864062014804, 23456248059220, 93824992236884, 375299968947540, 1501199875790164 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is the number of steps which are made when generating all n-step random walks that begin in a given point P on a two-dimensional square lattice. To make one step means to move along one edge on the lattice. - Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Mar 10 2005 Conjectured to be the number of integers from 0 to (10^n)-1 that lack 0, 1, 2, 3, 4 and 5 as a digit. - Alexandre Wajnberg, Apr 25 2005 Gives the values of m such that binomial(4*m + 4,m) is odd. Cf. A002450, A020988 and A263132. - Peter Bala, Oct 11 2015 Also the partial sums of 4^n for n>0, cf. A000302. - Robert G. Wilson v, Sep 18 2016 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..170 Mattia Fregola, Cellular Automata RULE13 generating OEIS sequence A080674 Index entries for linear recurrences with constant coefficients, signature (5,-4). FORMULA a(n) = Sum_{i = 1..n} 4^i. - Adam McDougall (mcdougal(AT)stolaf.edu), Sep 29 2004 a(n) = 4*a(n-1) + 4. - Alexandre Wajnberg, Apr 25 2005 a(n) = 4^n + a(n-1) (with a(0) = 0). - Vincenzo Librandi, Aug 08 2010 From Colin Barker, Oct 12 2015: (Start) a(n) = 5*a(n-1) - 4*a(n-2). G.f.: 4*x / ((x-1)*(4*x-1)). (End) MATHEMATICA Table[4*(4^n-1)/3, {n, 0, 100}]  (* Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *) LinearRecurrence[{5, -4}, {0, 4}, 40] (* Harvey P. Dale, May 05 2018 *) PROG (MAGMA) [(4/3)*(4^n-1): n in [0..40] ]; // Vincenzo Librandi, Apr 28 2011 (PARI) vector(100, n, n--; (4/3)*(4^n-1)) \\ Altug Alkan, Oct 11 2015 (PARI) Vec(4*x/((x-1)*(4*x-1)) + O(x^40)) \\ Colin Barker, Oct 12 2015 CROSSREFS a(n) = 2 * A020988(n) = A002450(n+1) - 1 = 4 * A002450(n). Row n = 4 of A228275. Cf. A000301, A002450, A263132. Sequence in context: A246574 A155721 A084240 * A246936 A110154 A158608 Adjacent sequences:  A080671 A080672 A080673 * A080675 A080676 A080677 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Mar 02 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 14:54 EDT 2019. Contains 328345 sequences. (Running on oeis4.)