Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #76 Aug 23 2024 05:54:41
%S 0,4,20,84,340,1364,5460,21844,87380,349524,1398100,5592404,22369620,
%T 89478484,357913940,1431655764,5726623060,22906492244,91625968980,
%U 366503875924,1466015503700,5864062014804,23456248059220,93824992236884,375299968947540,1501199875790164
%N a(n) = (4/3)*(4^n - 1).
%C a(n) is the number of steps which are made when generating all n-step random walks that begin in a given point P on a two-dimensional square lattice. To make one step means to move along one edge on the lattice. - Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Mar 10 2005
%C Conjectured to be the number of integers from 0 to (10^n)-1 that lack 0, 1, 2, 3, 4 and 5 as a digit. - _Alexandre Wajnberg_, Apr 25 2005
%C Gives the values of m such that binomial(4*m + 4,m) is odd. Cf. A002450, A020988 and A263132. - _Peter Bala_, Oct 11 2015
%C Also the partial sums of 4^n for n>0, cf. A000302. - _Robert G. Wilson v_, Sep 18 2016
%H Vincenzo Librandi, <a href="/A080674/b080674.txt">Table of n, a(n) for n = 0..170</a>
%H Peter Bala, <a href="/A002450/a002450.txt">A characterization of A002450, A020988 and A080674.</a>
%H Mattia Fregola, <a href="https://docs.google.com/spreadsheets/d/1xApi5KNDGye7I2lxsdlbvng_r7On6G2AyPxUduD3ANw/edit?usp=sharing">Cellular Automata RULE13 generating OEIS sequence A080674</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-4).
%F a(n) = 2*A020988(n) = A002450(n+1) - 1 = 4*A002450(n).
%F a(n) = Sum_{i = 1..n} 4^i. - Adam McDougall (mcdougal(AT)stolaf.edu), Sep 29 2004
%F a(n) = 4*a(n-1) + 4. - _Alexandre Wajnberg_, Apr 25 2005
%F a(n) = 4^n + a(n-1) (with a(0) = 0). - _Vincenzo Librandi_, Aug 08 2010
%F From _Colin Barker_, Oct 12 2015: (Start)
%F a(n) = 5*a(n-1) - 4*a(n-2).
%F G.f.: 4*x / ((x-1)*(4*x-1)). (End)
%F E.g.f.: 4*exp(x)*(exp(3*x) - 1)/3. - _Elmo R. Oliveira_, Dec 17 2023
%t Table[4*(4^n-1)/3,{n,0,100}] (* _Vladimir Joseph Stephan Orlovsky_, Jan 30 2012 *)
%t LinearRecurrence[{5,-4},{0,4},40] (* _Harvey P. Dale_, May 05 2018 *)
%o (Magma) [(4/3)*(4^n-1): n in [0..40] ]; // _Vincenzo Librandi_, Apr 28 2011
%o (PARI) vector(100, n, n--; (4/3)*(4^n-1)) \\ _Altug Alkan_, Oct 11 2015
%o (PARI) Vec(4*x/((x-1)*(4*x-1)) + O(x^40)) \\ _Colin Barker_, Oct 12 2015
%Y Row n = 4 of A228275.
%Y Cf. A000301, A000302, A002450, A020988, A024036, A080674, A263132.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Mar 02 2003