OFFSET
1,1
COMMENTS
Complement of A007775. - Gary Detlefs, Oct 06 2013
The asymptotic density of this sequence is 11/15. - Amiram Eldar, Dec 07 2020
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-1).
FORMULA
a(n+22) = a(n) + 30. - Gary Detlefs, Oct 06 2013
G.f.: x *( 2 -x +2*x^2 -x^3 +2*x^4 +x^6 +2*x^8 +x^10 +2*x^12 +x^14 +2*x^16 -x^17 +2*x^18 -x^19 +2*x^20 ) / ( (x^10 -x^9 +x^8 -x^7 +x^6 -x^5 +x^4 -x^3 +x^2 -x+1)*(1 +x +x^5 +x^6 +x^7 +x^8 +x^9 +x^2 +x^4 +x^3 +x^10)*(x-1)^2 ). - R. J. Mathar, Jul 11 2024
MAPLE
A080671 := proc(n) local s; option remember;
s:=[2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30];
if n <= 22 then s[n] else 30 + A080671(n-22); fi; end proc; # N. J. A. Sloane, Sep 01 2022
MATHEMATICA
Select[Range[98], Mod[#, 2]*Mod[#, 3]*Mod[#, 5] == 0 &] (* T. D. Noe, Oct 07 2013 *)
d235Q[n_]:=AnyTrue[Divisors[n], MemberQ[{2, 3, 5}, #]&]; Select[Range[100], d235Q] (* Harvey P. Dale, Sep 22 2024 *)
PROG
(PARI) div235(n) = { for(x=1, n, if(gcd(x, 30)<>1, print1(x", ")) ) }
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Mar 02 2003
STATUS
approved