login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299859
Coefficients in expansion of (E_6^2/E_4^3)^(1/8).
19
1, -216, -2592, -10412064, -1955812608, -1193816824272, -424976182312320, -205525905843878208, -89308328381644142592, -42098146869799454214456, -19580168925118916335723968, -9345687920591466548039096160
OFFSET
0,2
LINKS
FORMULA
G.f.: (1 - 1728/j)^(1/8), where j is the j-function.
a(n) ~ -3^(1/8) * Gamma(1/4) * exp(2*Pi*n) / (8 * Pi^(3/4) * Gamma(3/4) * n^(5/4)). - Vaclav Kotesovec, Mar 04 2018
a(n) * A299994(n) ~ -exp(4*Pi*n) / (4*sqrt(2)*Pi*n^2). - Vaclav Kotesovec, Mar 04 2018
MATHEMATICA
terms = 12;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E6[x]^2/E4[x]^3)^(1/8) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
CROSSREFS
(E_6^2/E_4^3)^(k/288): A289366 (k=1), A296609 (k=2), A296614 (k=3), A296652 (k=4), A297021 (k=6), A299422 (k=8), A299862 (k=9), A289368 (k=12), A299856 (k=16), A299857 (k=18), A299858 (k=24), A299863 (k=32), this sequence (k=36), A299860 (k=48), A299861 (k=72), A299414 (k=96), A299413 (k=144), A289210 (k=288).
Cf. A000521 (j).
Sequence in context: A243862 A223559 A017055 * A017139 A249005 A249470
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 21 2018
STATUS
approved