login
A299414
Coefficients in expansion of (E_6^2/E_4^3)^(1/3).
19
1, -576, 96768, -30253824, 4526272512, -1917275819904, 105679295281152, -161582272076127744, -20815321809392861184, -20529723592970845750080, -6560883968194298456036352, -3617226648349298247150473472
OFFSET
0,2
LINKS
FORMULA
G.f.: (1 - 1728/j)^(1/3), where j is the j-function.
a(n) ~ -Gamma(1/4)^(8/3) * exp(2*Pi*n) / (2^(5/3) * 3^(2/3) * Pi^2 * Gamma(1/3) * n^(5/3)). - Vaclav Kotesovec, Mar 04 2018
a(n) * A300054(n) ~ -exp(4*Pi*n) / (sqrt(3)*Pi*n^2). - Vaclav Kotesovec, Mar 04 2018
MATHEMATICA
terms = 12;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}] + O[x]^terms;
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}] + O[x]^terms; (E6[x]^2/E4[x]^3)^(1/3) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 22 2018 *)
CROSSREFS
(E_6^2/E_4^3)^(k/288): A289366 (k=1), A296609 (k=2), A296614 (k=3), A296652 (k=4), A297021 (k=6), A299422 (k=8), A299862 (k=9), A289368 (k=12), A299856 (k=16), A299857 (k=18), A299858 (k=24), A299863 (k=32), A299859 (k=36), A299860 (k=48), A299861 (k=72), this sequence (k=96), A299413 (k=144), A289210 (k=288).
Sequence in context: A373454 A249688 A079396 * A300054 A013775 A068277
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 21 2018
STATUS
approved