login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299857
Coefficients in expansion of (E_6^2/E_4^3)^(1/16).
19
1, -108, -7128, -5975856, -1648702944, -817564231656, -330392410226208, -154125342449733600, -69899495093389741824, -33019122368612611954332, -15654348707682435222420432, -7540807164973158284078993424
OFFSET
0,2
LINKS
FORMULA
G.f.: (1 - 1728/j)^(1/16), where j is the j-function.
a(n) ~ -3^(1/16) * sqrt(Gamma(1/4)) * exp(2*Pi*n) / (8 * sqrt(2) * Pi^(3/8) * Gamma(7/8) * n^(9/8)). - Vaclav Kotesovec, Mar 04 2018
a(n) * A299951(n) ~ -sin(Pi/8) * exp(4*Pi*n) / (8*Pi*n^2). - Vaclav Kotesovec, Mar 04 2018
MATHEMATICA
terms = 12;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E6[x]^2/E4[x]^3)^(1/16) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
CROSSREFS
(E_6^2/E_4^3)^(k/288): A289366 (k=1), A296609 (k=2), A296614 (k=3), A296652 (k=4), A297021 (k=6), A299422 (k=8), A299862 (k=9), A289368 (k=12), A299856 (k=16), this sequence (k=18), A299858 (k=24), A299863 (k=32), A299859 (k=36), A299860 (k=48), A299861 (k=72), A299414 (k=96), A299413 (k=144), A289210 (k=288).
Cf. A000521 (j).
Sequence in context: A269148 A143403 A269210 * A132053 A273439 A164748
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 21 2018
STATUS
approved