login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299854
G.f. S(x) satisfies C(x)^(1/2) - S(x)^(1/2) = 1 such that C'(x)*S(x)^(1/2) = S'(x)*C(x)^(1/2) = 72*x.
2
36, -144, 864, -6048, 46080, -370656, 3096576, -26604864, 233570304, -2086063200, 18893242368, -173111152320, 1601754365952, -14945262816960, 140461536706560, -1328495714939520, 12635295568625664, -120770748612067680, 1159474181591531520, -11176086736640548800, 108114032779214192640, -1049288769526156568640, 10214201953998140866560, -99701511082612622322048
OFFSET
2,1
COMMENTS
a(n) = -(-1)^n * 36 * A214377(n-2) for n>=2.
FORMULA
The functions C = C(x) and S = S(x) satisfy:
(1a) sqrt(C) - sqrt(S) = 1.
(1b) C'*sqrt(S) = S'*sqrt(C) = 72*x.
(1c) C' = 72*x/sqrt(S).
(1d) S' = 72*x/sqrt(C).
Integrals.
(2a) C = 1 + Integral 72*x/sqrt(S) dx.
(2b) S = Integral 72*x/sqrt(C) dx.
(2c) C = 1 + Integral S'*sqrt(C/S) dx.
(2d) S = Integral C'*sqrt(S/C) dx.
Exponentials.
(3a) sqrt(C) = exp( Integral 36*x/(C*sqrt(S)) dx ).
(3b) sqrt(S) = 6*x*exp( Integral 36*x/(S*sqrt(C)) - 1/x dx ).
(3c) C - S = exp( Integral 72*x/(C*sqrt(S) + S*sqrt(C)) dx ).
(3d) C - S = exp( Integral C'*S'/(C*S' + S*C') dx).
Functional equations.
(4a) C = 1/3 - 36*x^2 + (2/3)*C^(3/2).
(4b) S = 36*x^2 - (2/3)*S^(3/2).
Explicit solutions.
(5a) C(x) = 1 + Sum_{n>=1} 2*(-4)^n*binomial(3*n/2,n)/((3*n-2)*(3*n-4)) * x^n.
(5b) S(x) = 36*x^2 + Sum_{n>=3} 18*(-4)^n*(3*n-3)*binomial(3*n/2-2,n)/((3*n-4)*(3*n-6)) * x^n.
(5c) sqrt(C(x)) = 1 + Sum_{n>=1} -(-4)^n * binomial(3*n/2,n)/(3*n-2) * x^n.
Formulas for terms.
a(n) = 18*(-4)^n * (3*n-3) * binomial(3*n/2-2,n) / ((3*n-4)*(3*n-6)) for n>=3, with a(2) = 36.
EXAMPLE
G.f.: S(x) = 36*x^2 - 144*x^3 + 864*x^4 - 6048*x^5 + 46080*x^6 - 370656*x^7 + 3096576*x^8 - 26604864*x^9 + 233570304*x^10 + ...
RELATED SERIES.
C(x) = 1 + 12*x + 12*x^2 - 24*x^3 + 96*x^4 - 504*x^5 + 3072*x^6 - 20592*x^7 + 147456*x^8 - 1108536*x^9 + 8650752*x^10 + ...
C(x)^(1/2) = 1 + 6*x - 12*x^2 + 60*x^3 - 384*x^4 + 2772*x^5 - 21504*x^6 + 175032*x^7 - 1474560*x^8 + 12748164*x^9 - 112459776*x^10 + ...
sqrt(S(x)) = 6*x - 12*x^2 + 60*x^3 - 384*x^4 + 2772*x^5 - 21504*x^6 + 175032*x^7 - 1474560*x^8 + 12748164*x^9 - 112459776*x^10 + ...
where C(x)^(1/2) - S(x)^(1/2) = 1
and C'*sqrt(S) = S'*sqrt(C) = 72*x.
PROG
(PARI) {a(n) = my(C=1, S=x^2); for(i=0, n, C = 1 + intformal( 72*x/sqrt(S +x^3*O(x^n)) ); S = intformal( 72*x/sqrt(C) ) ); polcoeff(S, n)}
for(n=2, 30, print1(a(n), ", "))
(PARI) {a(n) = if(n<2, 0, n==2, 36, 18*(-4)^n * (3*n-3) * binomial(3*n/2-2, n) / ((3*n-4)*(3*n-6)) )}
for(n=2, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Feb 20 2018
STATUS
approved