login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110754
a(n) = tau(N), where N = the number obtained as a concatenation of 8712 with itself n times and tau(n) = number of divisors of n.
2
36, 144, 768, 576, 1152, 6144, 2304, 18432, 15360, 18432, 12288, 49152, 4608, 36864, 6291456, 294912, 9216, 983040, 576, 294912, 18874368, 196608, 9216, 25165824, 1179648, 73728, 2359296, 1179648, 73728, 402653184, 2304, 2359296, 33554432, 147456, 75497472, 31457280, 147456, 36864
OFFSET
1,1
COMMENTS
8712 has the property that any number of concatenation of it with self and the digit reversal have same prime divisors.
FORMULA
a(n) = A000005(8712*Sum_{i=0..n-1} 10^(4i)). - R. J. Mathar, Aug 17 2007
EXAMPLE
a(2) = tau(87128712) = 144.
MAPLE
A110754 := proc(n) local pow8712, i ; pow8712 := 8712*add(10^(4*i), i=0..n-1) ; numtheory[tau](pow8712) ; end: seq(A110754(n), n=1..22) ; # R. J. Mathar, Aug 17 2007
MATHEMATICA
Table[DivisorSigma[0, FromDigits[PadRight[{}, 4n, {8, 7, 1, 2}]]], {n, 25}] (* Harvey P. Dale, Dec 29 2016 *)
PROG
(PARI) a(n)={numdiv(8712*(10^(4*n)-1)/9999)} \\ Andrew Howroyd, Nov 09 2019
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Aug 11 2005
EXTENSIONS
More terms from R. J. Mathar, Aug 17 2007
a(23)-a(38) from Andrew Howroyd, Nov 09 2019
STATUS
approved