login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283820
a(n) = (1 + Sum_{j=1..K-2} a(n-j)*a(n-j-1))/a(n-K) with a(1),...,a(K)=1, where K=7.
3
1, 1, 1, 1, 1, 1, 1, 6, 11, 76, 911, 70146, 63973151, 4487524623191, 47846849137190094661, 19519446695048425827542253313671, 12288737121834287082853490635842863813970134234101
OFFSET
1,8
LINKS
Matthew Christopher Russell, Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences, PhD Dissertation, Mathematics Department, Rutgers University, May 2016; see also.
MATHEMATICA
a[n_]:=If[n<8, 1, (1 + Sum[a[n - j] * a[n - j - 1], {j, 5}])/a[n - 7]]; Table[a[n], {n, 1, 17}] (* Indranil Ghosh, Mar 17 2017 *)
PROG
(PARI) a(n) = if(n<8, 1, (1 + sum(j=1, 5, a(n - j) * a(n - j - 1)))/a(n - 7));
for(n=1, 17, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 17 2017
CROSSREFS
Sequence in context: A001543 A077705 A077697 * A332659 A219702 A013321
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 17 2017
EXTENSIONS
More terms from Indranil Ghosh, Mar 17 2017
STATUS
approved