login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363434
Total number of blocks containing only elements of the same parity in all partitions of [n].
7
0, 1, 2, 7, 24, 97, 412, 1969, 9898, 54461, 313944, 1947613, 12603100, 86760255, 620559230, 4682462777, 36586620348, 299664171115, 2534306825064, 22355119509231, 203115201624030, 1917124624702475, 18598998656476220, 186822424157036439, 1925326063016510832
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} k * A124424(n,k).
a(n) = A363452(n) + A363453(n).
a(n) mod 2 = A000035(n).
EXAMPLE
a(3) = 7 = 0 + 1 + 2 + 1 + 3 : 123, 12|3, 13|2, 1|23, 1|2|3.
MAPLE
b:= proc(n, e, o, m) option remember; `if`(n=0, e+o,
(e+m)*b(n-1, o, e, m)+b(n-1, o, e+1, m)+
`if`(o=0, 0, o*b(n-1, o-1, e, m+1)))
end:
a:= n-> b(n, 0$3):
seq(a(n), n=0..24);
MATHEMATICA
b[n_, e_, o_, m_] := b[n, e, o, m] = If[n == 0, e + o, (e + m)*b[n-1, o, e, m] + b[n - 1, o, e + 1, m] + If[o == 0, 0, o*b[n - 1, o - 1, e, m + 1]]];
a[n_] := b[n, 0, 0, 0];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Sep 10 2023, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 01 2023
STATUS
approved