login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363451
Number of partitions of [n] such that the number of blocks containing only odd elements equals the number of blocks containing only even elements.
4
1, 0, 2, 2, 9, 23, 99, 353, 1778, 7927, 45273, 238797, 1526331, 9215950, 65020448, 439742641, 3388075807, 25270974635, 210763775071, 1713657668021, 15359474721088, 134902169999841, 1291589459223627, 12165062702520422, 123780591852786693, 1242763745129587332
OFFSET
0,3
LINKS
EXAMPLE
a(0) = 1: () the empty partition.
a(1) = 0.
a(2) = 2: 12, 1|2.
a(3) = 2: 123, 13|2.
a(4) = 9: 1234, 12|34, 12|3|4, 13|24, 14|23, 1|23|4, 14|2|3, 1|2|34, 1|2|3|4.
a(5) = 23: 12345, 123|45, 123|4|5, 125|34, 12|345, 125|3|4, 12|35|4, 134|25, 134|2|5, 135|24, 13|25|4, 13|2|45, 13|2|4|5, 145|23, 14|235, 15|23|4, 1|235|4, 145|2|3, 14|2|35, 15|2|34, 1|2|345, 15|2|3|4, 1|2|35|4.
MAPLE
b:= proc(n, x, y, m) option remember; `if`(n=0, `if`(x=y, 1, 0),
`if`(x+m>0, b(n-1, y, x, m)*(x+m), 0)+b(n-1, y, x+1, m)+
`if`(y>0, b(n-1, y-1, x, m+1)*y, 0))
end:
a:= n-> b(n, 0$3):
seq(a(n), n=0..28);
MATHEMATICA
b[n_, x_, y_, m_] := b[n, x, y, m] = If[n == 0, If[x == y, 1, 0], If[x + m > 0, b[n - 1, y, x, m]*(x + m), 0] + b[n - 1, y, x + 1, m] + If[y > 0, b[n - 1, y - 1, x, m + 1]*y, 0]];
a[n_] := b[n, 0, 0, 0];
Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Oct 20 2023, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 02 2023
STATUS
approved