login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363452
Total number of blocks containing only odd elements in all partitions of [n].
3
0, 1, 1, 5, 12, 62, 206, 1189, 4949, 31775, 156972, 1110280, 6301550, 48637701, 310279615, 2591820857, 18293310174, 164218811718, 1267153412532, 12152174863961, 101557600812015, 1035203191874931, 9299499328238110, 100314319611860936, 962663031508255416
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k=0..ceiling(n/2)} k * A124420(n,k).
a(n) = A363434(n) - A363453(n).
a(2n) = A363453(2n).
a(2n+1) = A363453(2n+1) + A094577(n).
EXAMPLE
a(3) = 5 = 0 + 1 + 1 + 1 + 2 : 123, 12|3, 13|2, 1|23, 1|2|3.
MAPLE
b:= proc(n, k) local g, u; g:= floor(n/2); u:=ceil(n/2);
add(Stirling2(i, k)*binomial(u, i)*
add(Stirling2(g, j)*j^(u-i), j=0..g), i=k..u)
end:
a:= n-> add(b(n, k)*k, k=0..ceil(n/2)):
seq(a(n), n=0..25);
# second Maple program:
b:= proc(n, x, y, m) option remember; `if`(n=0, y,
`if`(x+m>0, b(n-1, y, x, m)*(x+m), 0)+b(n-1, y, x+1, m)+
`if`(y>0, b(n-1, y-1, x, m+1)*y, 0))
end:
a:= n-> b(n, 0$3):
seq(a(n), n=0..25);
MATHEMATICA
b[n_, x_, y_, m_] := b[n, x, y, m] = If[n == 0, y,
If[x + m > 0, b[n-1, y, x, m]*(x+m), 0] + b[n-1, y, x+1, m] +
If[y > 0, b[n-1, y-1, x, m+1]*y, 0]];
a[n_] := b[n, 0, 0, 0];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 08 2023, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 02 2023
STATUS
approved