login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of blocks containing only odd elements in all partitions of [n].
3

%I #19 Dec 08 2023 07:12:15

%S 0,1,1,5,12,62,206,1189,4949,31775,156972,1110280,6301550,48637701,

%T 310279615,2591820857,18293310174,164218811718,1267153412532,

%U 12152174863961,101557600812015,1035203191874931,9299499328238110,100314319611860936,962663031508255416

%N Total number of blocks containing only odd elements in all partitions of [n].

%H Alois P. Heinz, <a href="/A363452/b363452.txt">Table of n, a(n) for n = 0..250</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>

%F a(n) = Sum_{k=0..ceiling(n/2)} k * A124420(n,k).

%F a(n) = A363434(n) - A363453(n).

%F a(2n) = A363453(2n).

%F a(2n+1) = A363453(2n+1) + A094577(n).

%e a(3) = 5 = 0 + 1 + 1 + 1 + 2 : 123, 12|3, 13|2, 1|23, 1|2|3.

%p b:= proc(n, k) local g, u; g:= floor(n/2); u:=ceil(n/2);

%p add(Stirling2(i, k)*binomial(u, i)*

%p add(Stirling2(g, j)*j^(u-i), j=0..g), i=k..u)

%p end:

%p a:= n-> add(b(n, k)*k, k=0..ceil(n/2)):

%p seq(a(n), n=0..25);

%p # second Maple program:

%p b:= proc(n, x, y, m) option remember; `if`(n=0, y,

%p `if`(x+m>0, b(n-1, y, x, m)*(x+m), 0)+b(n-1, y, x+1, m)+

%p `if`(y>0, b(n-1, y-1, x, m+1)*y, 0))

%p end:

%p a:= n-> b(n, 0$3):

%p seq(a(n), n=0..25);

%t b[n_, x_, y_, m_] := b[n, x, y, m] = If[n == 0, y,

%t If[x + m > 0, b[n-1, y, x, m]*(x+m), 0] + b[n-1, y, x+1, m] +

%t If[y > 0, b[n-1, y-1, x, m+1]*y, 0]];

%t a[n_] := b[n, 0, 0, 0];

%t Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Dec 08 2023, after _Alois P. Heinz_ *)

%Y Cf. A000110, A094577, A124420, A363434, A363453.

%K nonn

%O 0,4

%A _Alois P. Heinz_, Jun 02 2023