login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302182
Number of 3D walks of type abc.
1
1, 1, 5, 12, 62, 200, 1065, 3990, 21714, 89082, 492366, 2147376, 12004740, 54718092, 308559537, 1454116950, 8255788970, 39935276810, 227976044010, 1126178350440, 6457854821340, 32456552441040, 186814834574550, 952569927106980, 5500292590186380, 28391993275117500
OFFSET
0,3
COMMENTS
See Dershowitz (2017) for precise definition.
LINKS
Nachum Dershowitz, Touchard’s Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.
FORMULA
From Mélika Tebni, Nov 27 2024: (Start)
a(n) = Sum_{k=0..n} binomial(n, k)*A126120(k)*A018224(n-k).
a(2*n+1) = A135394(n) / (2*n+2).
a(2*n) = A302181(n). (End)
PROG
(Python)
from math import comb as binomial
def row(n: int) -> list[int]:
return sum(binomial(n, k)*binomial(k, k//2)//(k//2+1)*((k+1) %2)*binomial(n-k, (n-k)//2)**2 for k in range(n+1))
for n in range(26): print(row(n)) # Mélika Tebni, Nov 27 2024
KEYWORD
nonn,walk
AUTHOR
N. J. A. Sloane, Apr 09 2018
EXTENSIONS
a(13)-a(25) from Mélika Tebni, Nov 27 2024
STATUS
approved