login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 3D walks of type abc.
1

%I #14 Nov 27 2024 18:55:00

%S 1,1,5,12,62,200,1065,3990,21714,89082,492366,2147376,12004740,

%T 54718092,308559537,1454116950,8255788970,39935276810,227976044010,

%U 1126178350440,6457854821340,32456552441040,186814834574550,952569927106980,5500292590186380,28391993275117500

%N Number of 3D walks of type abc.

%C See Dershowitz (2017) for precise definition.

%H Nachum Dershowitz, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Dershowitz/dersh3.html">Touchard’s Drunkard</a>, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.

%F From _Mélika Tebni_, Nov 27 2024: (Start)

%F a(n) = Sum_{k=0..n} binomial(n, k)*A126120(k)*A018224(n-k).

%F a(2*n+1) = A135394(n) / (2*n+2).

%F a(2*n) = A302181(n). (End)

%o (Python)

%o from math import comb as binomial

%o def row(n: int) -> list[int]:

%o return sum(binomial(n, k)*binomial(k, k//2)//(k//2+1)*((k+1) %2)*binomial(n-k, (n-k)//2)**2 for k in range(n+1))

%o for n in range(26): print(row(n)) # _Mélika Tebni_, Nov 27 2024

%Y Cf. A000108, A000984, A002212, A002896, A005572, A026375, A064037, A081671, A138547, A145847, A145867, A150500, A202814.

%Y Cf. A018224, A126120, A135394, A302181.

%K nonn,walk

%O 0,3

%A _N. J. A. Sloane_, Apr 09 2018

%E a(13)-a(25) from _Mélika Tebni_, Nov 27 2024