login
A018224
a(n) = binomial(n, floor(n/2))^2 = A001405(n)^2.
11
1, 1, 4, 9, 36, 100, 400, 1225, 4900, 15876, 63504, 213444, 853776, 2944656, 11778624, 41409225, 165636900, 590976100, 2363904400, 8533694884, 34134779536, 124408576656, 497634306624, 1828114918084
OFFSET
0,3
COMMENTS
a(n) is also the number of rooted two-vertex (or, dually, two-face) regular planar maps of valency n+1. - Valery A. Liskovets, Oct 19 2005
If A is a random matrix in USp(4) (4 X 4 complex matrices that are unitary and symplectic), then a(n)=(-1)^n*E[(tr(A^4))^n]. - Andrew V. Sutherland, Apr 01 2008
Number of square lattice walks with unit steps in all four directions (NSWE), starting at the origin, ending on the y-axis, and never going below the x-axis. Row sums of A378061. - Peter Luschny, Dec 08 2024
LINKS
Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Slides, Séminaire de Combinatoire Ph. Flajolet, March 28 2013.
Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Synthesis, Séminaire de Combinatoire Ph. Flajolet, June 06 2013.
Alin Bostan, Calcul Formel pour la Combinatoire des Marches [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d’Informatique de Paris Nord, Université Paris 13, December 2017.
Alin Bostan, Frédéric Chyzak, Mark van Hoeij, Manuel Kauers, and Lucien Pech, Hypergeometric expressions for generating functions of walks with small steps in the quarter plane, Eur. J. Comb. 61, 242-275 (2017).
M. Bousquet, G. Labelle and P. Leroux, Enumeration of planar two-face maps, Discrete Math., vol. 222 (2000), 1-25.
Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
Helmut Prodinger, Two New Identities Involving the Catalan Numbers: A classical approach, arXiv:1911.07604 [math.CO], 2019.
FORMULA
E.g.f.: BesselI(0, 2*x)*(BesselI(0, 2*x)+BesselI(1, 2*x)). - Vladeta Jovovic, Jun 12 2005
G.f. (1+1/(4*x))*hypergeom([1/2, 1/2],[1],16*x^2)-1/(4*x). - Mark van Hoeij, Oct 13 2009
a(n) = (n!/(floor(n/2)!*floor((n+1)/2)!))^2. - Peter Luschny, Apr 29 2014
a(n) = A056040(n) * A056040(n+1) / (n+1). - Peter Luschny, Apr 29 2014
a(n) = 4^n*[x^n]((1+x)*EllipticK(x)/(x*Pi/2)-1/x). - Peter Luschny, Oct 14 2015
a(n) ~ 4^n*((2*n+3)/(2*n+1))^((-1)^n/2)/((n+1)*Pi/2). - Peter Luschny, Oct 14 2015
a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*C(k)*binomial(2*n-2*k,n-k) where C(k) are Catalan numbers (A000108), see Prodinger. - Michel Marcus, Nov 19 2019
From Peter Bala, Jul 03 2023: (Start)
Right hand side of the binomial sum identity (1/2)*Sum_{k = 0..n+1} (-1)^k*4^(n+1-k)*binomial(n+1,k)*binomial(n+k,k)*binomial(2*k,k) = a(n).
a(n) = (1/2)*4^(n+1) * hypergeom([n+1, -n-1, 1/2], [1, 1], 1).
P-recursive:
(2*n - 1)*(n + 1)^2*a(n) = 4*(2*n^2 - 1)*a(n-1) + 16*(2*n + 1)*(n - 1)^2*a(n-2) with a(0) = a(1) = 1. (End)
EXAMPLE
The 9 lattice walks defined in the comments: 'NNN', 'NNS', 'NSN', 'NWE', 'NEW', 'WNE', 'WEN', 'ENW', 'EWN'.
MAPLE
s := x -> (1+x)*EllipticK(x)/(x*Pi/2)-1/x:
seq(4^n*coeff(series(s(x), x, n+2), x, n), n=0..23); # Peter Luschny, Oct 14 2015
MATHEMATICA
(* Note that Mathematica uses a different definition of the EllipticK function. *)
CoefficientList[Series[(-Pi + (2 + 8 x) EllipticK[16 x^2])/(4 Pi x), {x, 0, 23}], x] (* Peter Luschny, Oct 14 2015 *)
Table[Binomial[n, Floor[n/2]]^2, {n, 0, 30}] (* Harvey P. Dale, Dec 02 2022 *)
PROG
(PARI) vector(50, n, n--; binomial(n, n\2)^2) \\ Altug Alkan, Oct 14 2015
CROSSREFS
Bisections are A002894 and A060150.
Sequence in context: A239213 A346537 A339999 * A149137 A149138 A149139
KEYWORD
nonn,easy
STATUS
approved