login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346537
Squares that are divisible by the product of their nonzero digits.
0
1, 4, 9, 36, 100, 144, 400, 900, 1024, 1296, 2304, 2500, 2916, 3600, 10000, 11664, 12100, 14400, 22500, 32400, 40000, 41616, 78400, 82944, 90000, 102400, 110224, 121104, 122500, 129600, 152100, 176400, 186624, 200704, 202500, 219024, 230400, 250000, 260100, 291600
OFFSET
1,2
LINKS
Jean-Marie De Koninck and Florian Luca, Positive integers divisible by the product of their nonzero digits, Port. Math. 64 (2007) 75-85. (This proof for upper bounds contains an error. See the paper below.)
EXAMPLE
For the perfect square 1024 = 32^2 the product of its nonzero digits is 8 which divides 1024.
MATHEMATICA
Select[Range[500]^2, Divisible[#, Times @@ Select[IntegerDigits[#], #1 > 0 &]] &] (* Amiram Eldar, Jul 23 2021 *)
PROG
(Python)
from math import prod
def nzpd(n): return prod([int(d) for d in str(n) if d != '0'])
def ok(sqr): return sqr > 0 and sqr%nzpd(sqr) == 0
print(list(filter(ok, (i*i for i in range(541))))) # Michael S. Branicky, Jul 23 2021
(PARI) isok(m) = issquare(m) && !(m % vecprod(select(x->(x>0), digits(m))));
lista(nn) = for (m=1, nn, if (isok(m^2), print1(m^2, ", "))); \\ Michel Marcus, Jul 23 2021
CROSSREFS
Intersection of A000290 and A055471.
Sequence in context: A126161 A179934 A239213 * A339999 A018224 A149137
KEYWORD
nonn,base
STATUS
approved