login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346539
a(n) is the number of paths in the Z X Z grid joining (0,0) and (n,n) each of whose steps increases the Euclidean distance to the origin and has coordinates with absolute value at most 1.
3
1, 3, 25, 241, 2545, 28203, 322681, 3776275, 44947503, 542097295, 6607714859, 81247609095, 1006335719467, 12542292874825, 157159924565801, 1978517963096763, 25010881408459855, 317327992746937599, 4039340709637022007, 51569571332132589961, 660140626022179390983
OFFSET
0,2
COMMENTS
All terms are odd.
LINKS
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 1/6*(19009+153*sqrt(17))^(1/3) + 356/(3*(19009+153*sqrt(17))^(1/3)) + 14/3 = 13.56165398271839628518... and c = 2.3842296614800994817864695565477260682981556338086519... . - Vaclav Kotesovec, Sep 13 2021
MAPLE
b:= proc(n, k) option remember; `if`([n, k]=[0$2], 1, add(add(
`if`(i^2+j^2<n^2+k^2, b(sort([i, j])[]), 0), j=k-1..k+1), i=n-1..n+1))
end:
a:= n-> b(n$2):
seq(a(n), n=0..23); # Alois P. Heinz, Sep 12 2021
MATHEMATICA
rodean[{m_, n_}] := Select[ Complement[ Flatten[Table[{m, n} + {s, t}, {s, -1, 1}, {t, -1, 1}], 1] // Union, {{m, n}}], #[[1]]^2 + #[[2]]^2 < m^2 + n^2 &];
$RecursionLimit=10^6; Clear[T]; T[{0, 0}]=1; T[{m_, n_}]:= T[{m, n}]= Sum[T[rodean[{m, n}][[i]]], {i, Length[rodean[{m, n}]]}]; Table[T[{n, n}], {n, 0, 22}]
(* Second program: *)
b[n_, k_] := b[n, k] = If[{n, k} == {0, 0}, 1, Sum[Sum[If[i^2 + j^2 < n^2 + k^2, b@@Sort[{i, j}], 0], {j, k-1, k+1}], {i, n-1, n+1}]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Nov 03 2021, after Alois P. Heinz *)
CROSSREFS
Main diagonal of A346538.
Column k=2 of A347811.
Sequence in context: A332468 A134272 A335117 * A350224 A171640 A099913
KEYWORD
nonn
AUTHOR
STATUS
approved