OFFSET
0,2
COMMENTS
All terms are odd.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..886
Alois P. Heinz, Animation of a(3) = 241 paths
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 1/6*(19009+153*sqrt(17))^(1/3) + 356/(3*(19009+153*sqrt(17))^(1/3)) + 14/3 = 13.56165398271839628518... and c = 2.3842296614800994817864695565477260682981556338086519... . - Vaclav Kotesovec, Sep 13 2021
MAPLE
b:= proc(n, k) option remember; `if`([n, k]=[0$2], 1, add(add(
`if`(i^2+j^2<n^2+k^2, b(sort([i, j])[]), 0), j=k-1..k+1), i=n-1..n+1))
end:
a:= n-> b(n$2):
seq(a(n), n=0..23); # Alois P. Heinz, Sep 12 2021
MATHEMATICA
rodean[{m_, n_}] := Select[ Complement[ Flatten[Table[{m, n} + {s, t}, {s, -1, 1}, {t, -1, 1}], 1] // Union, {{m, n}}], #[[1]]^2 + #[[2]]^2 < m^2 + n^2 &];
$RecursionLimit=10^6; Clear[T]; T[{0, 0}]=1; T[{m_, n_}]:= T[{m, n}]= Sum[T[rodean[{m, n}][[i]]], {i, Length[rodean[{m, n}]]}]; Table[T[{n, n}], {n, 0, 22}]
(* Second program: *)
b[n_, k_] := b[n, k] = If[{n, k} == {0, 0}, 1, Sum[Sum[If[i^2 + j^2 < n^2 + k^2, b@@Sort[{i, j}], 0], {j, k-1, k+1}], {i, n-1, n+1}]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Nov 03 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
José María Grau Ribas, Sep 10 2021
STATUS
approved