login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346538
Table read by antidiagonals: T(n,k) is the number of paths in the Z X Z grid joining (0,0) and (n,k) each of whose steps increases the Euclidean distance to the origin and has coordinates with absolute value at most 1.
2
1, 1, 1, 7, 3, 7, 29, 11, 11, 29, 173, 72, 25, 72, 173, 937, 382, 108, 108, 382, 937, 5527, 2295, 803, 241, 803, 2295, 5527, 32309, 13391, 4632, 1152, 1152, 4632, 13391, 32309, 193663, 80677, 29450, 9132, 2545, 9132, 29450, 80677, 193663
OFFSET
0,4
FORMULA
T(n,k) = T(k,n).
EXAMPLE
Array begins:
1, 1, 7, 29, 173, 937, 5527, ...
1, 3, 11, 72, 382, 2295, 13391, ...
7, 11, 25, 108, 803, 4632, 29450, ...
29, 72, 108, 241, 1152, 9132, 56043, ...
173, 382, 803, 1152, 2545, 12829, 106207, ...
937, 2295, 4632, 9132, 12829, 28203, 147239, ...
5527, 13391, 29450, 56043, 106207, 147239, 322681, ...
...
T(6,4) = T(5,3) + T(5,4) + T(5,5) + T(6,3) = 9132 + 12829 + 28203 + 56043 =106207.
T(7,5) = T(6,4) + T(6,5) + T(6,6) + T(7,4).
T(7,6) = T(6,6) + T(7,5) + T(6,5).
T(0,5) = T(-1,4) + T(0,4) + T(1,4).
MAPLE
T:= proc(n, k) option remember; `if`([n, k]=[0$2], 1, add(add(
`if`(i^2+j^2<n^2+k^2, T(i, j), 0), j=k-1..k+1), i=n-1..n+1))
end:
seq(seq(T(n, d-n), n=0..d), d=0..8); # Alois P. Heinz, Sep 08 2021
MATHEMATICA
rodean[{m_, n_}] := Select[ Complement[ Flatten[Table[{m, n} + {s, t}, {s, -1, 1}, {t, -1, 1}], 1] // Union, {{m, n}}], #[[1]]^2 + #[[2]]^2 < m^2 + n^2 &];
$RecursionLimit = 10^6; Clear[T]; T[{0, 0}] = 1;
T[{m_, n_}] := T[{m, n}] = Sum[T[rodean[{m, n}][[i]]], {i, Length[rodean[{m, n}]]}] ;
Table[T[{k, n - k}], {n, 0, 12}, {k, 0, n}] // Flatten
(* Second program: *)
T[n_, k_] := T[n, k] = If[{n, k} == {0, 0}, 1, Sum[Sum[If[i^2 + j^2 < n^2 + k^2, T[i, j], 0], {j, k - 1, k + 1}], {i, n - 1, n + 1}]];
Table[Table[T[n, d - n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Nov 03 2021, after Alois P. Heinz *)
CROSSREFS
Main diagonal gives A346539.
Column (or row) k=0 gives A347814.
Sequence in context: A271178 A247950 A256844 * A166201 A248281 A111197
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved