login
A346541
Number of walks on square lattice from (n,2n) to (0,0) using steps that decrease the Euclidean distance to the origin and increase the Euclidean distance to (n,2n) and that change each coordinate by at most 1.
2
1, 5, 173, 6273, 327304, 19662204, 1331125733, 97103842536, 7486548949630, 600824064355643, 49716537270181030, 4212436222856773156, 363673201239600512658, 31874623637580787947172, 2828388650238276648013964, 253555200931317108300020394, 22925898959060646660438636660
OFFSET
0,2
COMMENTS
Lattice points may have negative coordinates, and different walks may differ in length. All walks are self-avoiding.
FORMULA
a(n) = A346540(2n,n) = A346540(n,2n).
MAPLE
s:= proc(n) option remember;
`if`(n=0, [[]], map(x-> seq([x[], i], i=-1..1), s(n-1)))
end:
b:= proc(l, v) option remember; (n-> `if`(l=[0$n], 1, add((h-> `if`(
add(i^2, i=h)<add(i^2, i=l) and add(i^2, i=v-h)>add(i^2, i=v-l)
, b(h, v), 0))(l+x), x=s(n))))(nops(l))
end:
a:= n-> b([n, 2*n]$2):
seq(a(n), n=0..20);
MATHEMATICA
s[n_] := s[n] = If[n == 0, {{}}, Sequence @@
Table[Append[#, i], {i, -1, 1}]& /@ s[n-1]];
b[l_, v_] := b[l, v] = With[{n = Length[l]},
If[l == Table[0, {n}], 1, Sum[With[{h = l + x},
If[h.h<l.l && (v-h).(v-h)>(v-l).(v-l), b[h, v], 0]], {x, s[n]}]]];
a[n_] := b[{n, 2n}, {n, 2n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 04 2021, after Alois P. Heinz *)
CROSSREFS
Cf. A346540.
Sequence in context: A139986 A354573 A123111 * A380628 A303154 A060070
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Sep 16 2021
STATUS
approved