login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302180
Number of 3D walks of type aad.
1
1, 1, 3, 7, 23, 71, 251, 883, 3305, 12505, 48895, 193755, 783355, 3205931, 13302329, 55764413, 236174933, 1008773269, 4343533967, 18834033443, 82201462251, 360883031291, 1592993944723, 7066748314147, 31493800133173, 140953938878821, 633354801073571, 2856369029213263
OFFSET
0,3
COMMENTS
See Dershowitz (2017) for precise definition.
Number of 3D walks of length n in the first octant using steps (1, 1, 0), (1, -1, 0), (1, 0, 1), (1, 0, -1) and (1, 0, 0) that start at the origin and end at (n, 0, 0). The analogous problem in 2D is given by the Motzkin numbers A001006. - Farzan Byramji, Mar 06 2021
Inverse binomial transform of A145867 (Number of 3D walks of type aae). - Mélika Tebni, Nov 05 2024
LINKS
Nachum Dershowitz, Touchard's Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.
MAPLE
M := n-> add(binomial(n, 2*k)*binomial(2*k, k)/(k+1), k = 0 .. iquo(n, 2)): # Motzkin numbers
A302180 := n-> add((-1)^(n-k)*binomial(n, k)*add(binomial(k, j)*M(j)*M(k-j), j=0..k), k=0..n): seq(A302180(n), n = 0 .. 26); # Mélika Tebni, Nov 05 2024
KEYWORD
nonn,walk
AUTHOR
N. J. A. Sloane, Apr 09 2018
EXTENSIONS
a(14)-a(26) from Farzan Byramji, Mar 06 2021
STATUS
approved