login
A045723
Number of configurations, excluding reflections and black-white interchanges, of n black and n white beads on a string.
7
1, 1, 3, 7, 23, 71, 252, 890, 3299, 12283, 46508, 176870, 677294, 2602198, 10034104, 38787572, 150289699, 583434323, 2268861516, 8836447022, 34461940538, 134564992898, 526025965864, 2058359779052, 8061905791118, 31602659998046
OFFSET
0,3
COMMENTS
This sequence (with offset 0) equals the probable number of inequivalent classes of permutations acting on an n-party state under the trace norm in the context of permutation criteria for separability. - Lieven Clarisse, Apr 28 2006
Number of connected components of an undirected graph where the nodes are the n-subsets of {1,...,2n} and an edge (A,B) appears if B = {1,...,2n} \ A or B = {2n + 1 - i: i in A}. See Mathematics Magazine link. - Rob Pratt, Aug 10 2015
Number of distinct staircase walks connecting opposite corners of a square grid of side n > 1. - Christian Barrientos, Nov 25 2018
LINKS
Eddie Cheng and Jerrold W. Grossman, Problem 1959, Mathematics Magazine 87 (Dec. 2014), p. 396.
L. Clarisse and P. Wocjan, On independent permutation separability criteria, Quant. Inf. Comp. 6 277-288, 2006, arXiv:quant-ph/0504160, 2005.
FORMULA
a(n) = (1/4)*(2^n + C(2*n, n) + 2*C(n-1, (1/2)*(n-2))*((n+1) mod 2)).
a(n) = A042971(n) + A027306(n). - Michel Marcus, Nov 26 2018
MATHEMATICA
Table[ 1/4 (2^n + Binomial[ 2 n, n ] + 2 Binomial[ -1 + n, 1/2 (-2 + n) ]*Mod[ 1 + n, 2 ]), {n, 0, 24} ]
PROG
(PARI) a(n) = (1/4)*(2^n + binomial(2*n, n) + if ((n+1)%2, 2*binomial(n-1, (1/2)*(n-2)))); \\ Michel Marcus, Nov 25 2018
CROSSREFS
Cf. A042942.
Sequence in context: A194691 A148703 A302180 * A140456 A066768 A225914
KEYWORD
nonn
STATUS
approved