login
A302184
Number of 3D walks of type abe.
1
1, 2, 7, 26, 108, 472, 2159, 10194, 49396, 244328, 1229308, 6273896, 32410096, 169181664, 891181607, 4731912082, 25302648644, 136150941064, 736747902236, 4007011320808, 21893702201648, 120125750018656, 661630546993116, 3656966382542984, 20278320788680912, 112782556853239712
OFFSET
0,2
COMMENTS
See Dershowitz (2017) for precise definition.
LINKS
Nachum Dershowitz, Touchard’s Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.
FORMULA
a(n) = Sum_{k=0..n} binomial(n, k)*A126120(k)*A000984(n-k). - Mélika Tebni, Nov 30 2024
MAPLE
a := n -> 2*add(binomial(n, k)*binomial(k, k/2)*binomial(2*(n-k), n-k)/(k+2), k = 0..n, 2): seq(a(n), n = 0..25); # Peter Luschny, Nov 30 2024
PROG
(Python)
from math import comb as binomial
def a(n: int):
return sum(binomial(n, k)*binomial(k, k//2)//(k//2+1)*((k+1) %2)*binomial(2*(n-k), n-k) for k in range(n+1))
print([a(n) for n in range(26)]) # Mélika Tebni, Nov 30 2024
KEYWORD
nonn,walk
AUTHOR
N. J. A. Sloane, Apr 09 2018
EXTENSIONS
a(12)-a(25) from Mélika Tebni, Nov 30 2024
STATUS
approved