The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094577 Central Peirce numbers. Number of set partitions of {1,2,..,2n+1} in which n+1 is the smallest of its block. 13
 1, 3, 27, 409, 9089, 272947, 10515147, 501178937, 28773452321, 1949230218691, 153281759047387, 13806215066685433, 1408621900803060705, 161278353358629226675, 20555596673435403499083, 2896227959507289559616217, 448371253145121338801335489 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Let P(n,k) be the number of set partitions of {1,2,..,n} in which k is the smallest of its block. These numbers were introduced by C. S. Peirce (see reference, page 48). If this triangle is displayed as in A123346 (or A011971) then a(n) = A011971(2n, n) are the central Pierce numbers. - Peter Luschny, Jan 18 2011 Named after the American philosopher, logician, mathematician and scientist Charles Sanders Peirce (1839-1914). - Amiram Eldar, Jun 11 2021 REFERENCES Donald E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.2.1.5. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..288 Charles Sanders Peirce, On the Algebra of Logic, American Journal of Mathematics, Vol. 3 (1880), pp. 15-57. FORMULA a(n) = Sum_{k=0..n} binomial(n,k)*Bell(2*n-k). a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*Bell(2*n-k+1). a(n) = exp(-1)*Sum_{k>=0} (k(k+1))^n/k!. - Benoit Cloitre, Dec 30 2005 a(n) = Sum_{k=0..n} binomial(n,k)*Bell(n+k). - Vaclav Kotesovec, Jul 29 2022 EXAMPLE n = 1, S = {1, 2, 3}. k = n+1 = 2. Thus a(1) = card { 13|2, 1|23, 1|2|3 } = 3. - Peter Luschny, Jan 18 2011 MAPLE seq(add(binomial(n, k)*(bell(n+k)), k=0..n), n=0..14); # Zerinvary Lajos, Dec 01 2006 # The objective of this implementation is efficiency. # m -> [a(0), a(1), ..., a(m-1)] for m > 0. A094577_list := proc(m) local A, R, M, n, k, j; M := m+m-1; A := array(1..M); j := 1; R := 1; A[1] := 1; for n from 2 to M do A[n] := A[1]; for k from n by -1 to 2 do A[k-1] := A[k-1] + A[k] od; if is(n, odd) then j := j+1; R := R, A[j] fi od; [R] end: A094577_list(100); # example call - Peter Luschny, Jan 17 2011 MATHEMATICA f[n_] := Sum[Binomial[n, k]*BellB[2 n - k], {k, 0, n}]; Array[f, 15, 0] PROG (Python) # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs. from itertools import accumulate A094577_list, blist, b = [1], [1], 1 for n in range(2, 502): ....blist = list(accumulate([b]+blist)) ....b = blist[-1] ....blist = list(accumulate([b]+blist)) ....b = blist[-1] ....A094577_list.append(blist[-n]) # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014 CROSSREFS Cf. A094574, A020556, A216078. Main diagonal of array in A011971. Sequence in context: A365586 A201696 A011781 * A221624 A108525 A136719 Adjacent sequences: A094574 A094575 A094576 * A094578 A094579 A094580 KEYWORD nonn AUTHOR Vladeta Jovovic, May 12 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 19 01:31 EDT 2024. Contains 374388 sequences. (Running on oeis4.)