login
A216078
Number of horizontal and antidiagonal neighbor colorings of the odd squares of an n X 2 array with new integer colors introduced in row major order.
6
1, 1, 3, 7, 27, 87, 409, 1657, 9089, 43833, 272947, 1515903, 10515147, 65766991, 501178937, 3473600465, 28773452321, 218310229201, 1949230218691, 16035686850327, 153281759047387, 1356791248984295, 13806215066685433, 130660110400259849, 1408621900803060705
OFFSET
1,3
COMMENTS
Number of vertex covers and independent vertex sets of the n-1 X n-1 white bishops graph. Equivalently, the number of ways to place any number of non-attacking bishops on the white squares of an n-1 X n-1 board. - Andrew Howroyd, May 08 2017
Number of pairs of partitions (A<=B) of [n-1] such that the nontrivial blocks of A are of type {k,n-1-k} if n is even, and of type {k,n-k} if n is odd. - Francesca Aicardi, May 28 2022
LINKS
Eric Weisstein's World of Mathematics, Independent Vertex Set
Eric Weisstein's World of Mathematics, Vertex Cover
Eric Weisstein's World of Mathematics, White Bishop Graph
FORMULA
a(n) = Sum_{k=0..m} binomial(m, k)*Bell(m+k+e), with m = floor((n-1)/2), e = (n+1) mod 2 and where Bell(n) is the Bell exponential number A000110(n). - Francesca Aicardi, May 28 2022
From Vaclav Kotesovec, Jul 29 2022: (Start)
a(2*k) = A020556(k).
a(2*k+1) = A094577(k). (End)
EXAMPLE
Some solutions for n = 5:
x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x
x 2 x 0 x 0 x 2 x 0 x 1 x 1 x 2 x 2 x 1
0 x 2 x 1 x 3 x 1 x 0 x 2 x 3 x 0 x 0 x
x 3 x 1 x 2 x 2 x 0 x 1 x 1 x 1 x 2 x 0
There are 4 white squares on a 3 X 3 board. There is 1 way to place no non-attacking bishops, 4 ways to place 1 and 2 ways to place 2 so a(4) = 1 + 4 + 2 = 7. - Andrew Howroyd, Jun 06 2017
MAPLE
a:= n-> (m-> add(binomial(m, k)*combinat[bell](m+k+e)
, k=0..m))(iquo(n-1, 2, 'e')):
seq(a(n), n=1..26); # Alois P. Heinz, Oct 03 2022
MATHEMATICA
a[n_] := Module[{m, e}, {m, e} = QuotientRemainder[n - 1, 2];
Sum[Binomial[m, k]*BellB[m + k + e], {k, 0, m}]];
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jul 25 2022, after Francesca Aicardi *)
CROSSREFS
Column 2 of A216084.
Row sums of A274106(n-1).
Sequence in context: A148746 A372650 A148747 * A148748 A148749 A098465
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 01 2012
STATUS
approved