login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363435
Number of partitions of [2n] having exactly n blocks with all elements of the same parity.
4
1, 0, 5, 42, 569, 9470, 191804, 4534502, 122544881, 3721101192, 125331498349, 4634063018948, 186515332107196, 8114659545679752, 379362605925991692, 18961051425453713478, 1008752282616284996865, 56905048753221935350268, 3392250956149146382053539
OFFSET
0,3
LINKS
FORMULA
a(n) = A124424(2n,n).
Conjecture: Limit_{n->oo} (a(n)/n!)^(1/n) = A238258 = -2 / (LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))) = 3.0882773... - Vaclav Kotesovec, Oct 21 2023
EXAMPLE
a(2) = 5: 13|24, 14|2|3, 1|2|34, 1|23|4, 12|3|4.
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, expand(x*
add(g(n-j)*binomial(n-1, j-1), j=1..n)))
end:
S:= (n, k)-> coeff(g(n), x, k):
b:= proc(g, u) option remember;
add(S(g, k)*S(u, k)*k!, k=0..min(g, u))
end:
T:= proc(n, k) option remember; local g, u; g:= floor(n/2); u:= ceil(n/2);
add(add(add(binomial(g, i)*S(i, h)*binomial(u, j)*
S(j, k-h)*b(g-i, u-j), j=k-h..u), i=h..g), h=0..k)
end:
a:= n-> T(2*n, n):
seq(a(n), n=0..18);
MATHEMATICA
b[g_, u_] := b[g, u] = Sum[StirlingS2[g, k]*StirlingS2[u, k]*k!, {k, 0, Min[g, u]}];
T[n_, k_] := Module[{g, u}, g = Floor[n/2]; u = Ceiling[n/2]; Sum[Sum[Sum[ Binomial[g, i]*StirlingS2[i, h]*Binomial[u, j]*StirlingS2[j, k - h]*b[g - i, u - j], {j, k - h, u}], {i, h, g}], {h, 0, k}]];
a[n_] := T[2n, n];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 20 2023, after Alois P. Heinz in A124424 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 01 2023
STATUS
approved