login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363432
Number of 231-avoiding stabilized-interval-free permutations of size n.
1
1, 1, 1, 1, 2, 6, 18, 54, 170, 551, 1817, 6092, 20722, 71325, 248055, 870402, 3077861, 10959008, 39261382, 141430953, 512002865, 1861872379, 6798330676, 24915934639, 91630864177, 338048560865, 1250793108398, 4640542045919, 17260221009367, 64349394615738, 240434325753052
OFFSET
0,5
COMMENTS
A stabilized-interval-free (SIF) permutation on [n] = {1, 2, ..., n} is one that does not stabilize any proper subinterval of [n].
a(n) is also the number of 312-avoiding SIF permutations of size n.
LINKS
Daniel Birmajer, Juan B. Gil, Jordan O. Tirrell, and Michael D. Weiner, Pattern-avoiding stabilized-interval-free permutations, arXiv:2306.03155 [math.CO], 2023.
FORMULA
G.f.: 1 + x/(1+C(1)*x^2*(x+1)-x/(1+C(2)*x^3*(x+1)-x/(1+C(3)*x^4*(x+1)-x/(...)))), where C(k)=binomial(2*k,k)/(k+1).
EXAMPLE
For n=5 the a(5)=6 permutations are 51234, 51423, 53124, 54123, 54132, 54213.
MATHEMATICA
nmax = 30; CoefficientList[Series[1 + x/(1 + CatalanNumber[1]*x^2*(x + 1) + ContinuedFractionK[-x, 1 + CatalanNumber[k]*x^(k + 1)*(x + 1), {k, 2, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 23 2023 *)
CROSSREFS
Sequence in context: A114464 A007206 A062415 * A086680 A275872 A148455
KEYWORD
nonn
AUTHOR
Juan B. Gil, Jun 22 2023
STATUS
approved