login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363429
Number of set partitions of [n] such that each block has at most one even element.
2
1, 1, 2, 5, 10, 37, 77, 372, 799, 4736, 10427, 73013, 163967, 1322035, 3017562, 27499083, 63625324, 646147067, 1512354975, 16926317722, 40012800675, 489109544320, 1166271373797, 15455199988077, 37134022033885, 530149003318273, 1282405154139046, 19619325078384593
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..ceiling(n/2)} floor(n/2)^k * binomial(ceiling(n/2),k) * Bell(ceiling(n/2)-k).
EXAMPLE
a(0) = 1: () the empty partition.
a(1) = 1: 1.
a(2) = 2: 12, 1|2.
a(3) = 5: 123, 12|3, 13|2, 1|23, 1|2|3.
a(4) = 10: 123|4, 12|34, 12|3|4, 134|2, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|2|34, 1|2|3|4.
MAPLE
b:= proc(n, m) option remember; `if`(n=0, 1,
b(n-1, m+1)+m*b(n-1, m))
end:
a:= n-> (h-> b(n-h, h))(iquo(n, 2)):
seq(a(n), n=0..30);
CROSSREFS
Bisection gives: A134980 (even part).
Cf. A000110, A110132 (exactly one even), A124421 (at least one even), A363430 (at most one odd).
Sequence in context: A144636 A320430 A018418 * A290032 A155217 A004143
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 01 2023
STATUS
approved